

WILGER
COMBO-JET
SPRAY TIP CHARTS

UPDATED MARCH 2022

WORLD CLASS SPRAYING COMPONENTS

Drift Reduction

FOR MORE INFORMATION VISIT

WWW.WILGER!NET

Units: Metric (Litres/Hectare)

©Copyright 2022 Wilger Industries Ltd.
All rights reserved.

The COMBO-JET. Spray Tip Advantage

Less plugging, as the path of flow always gets larger

40% longer strainer that snaps & seals into place

SR / MR / DR / UR 90% **75**% 90%+ **Drift Reduction Series**

Cap color matched to flow rate

Super long-lasting stainless steel spray tip The most versatile spray tips for Pulse Width Modulation Systems (e.g. Capstan Pinpoint®/EVO®, Case AIM Command®, John Deere ExactApply®, IntelliSpray®, Raven Hawkeye®, & more)

Spray tip & cap are held together as one piece

Easy-to-read label

(MR110-06 = MR Series, 110° tip, 0.6 US GPM flow rate)

Best educational spray tip charts & tools provided to select the best spray tips

Combo-Jet tips use a modern pre-orifice & closed chamber design that produces significantly less drift, creating solid mass droplets, for maximum spray velocity and more meaningful spray.

Without needing consistent air induction for drift reduction Combo-Jet spray tips are the preferred tip for Pulse Width Modulation (PWM) spraying systems.

WILGER.NET has the most useful spray tip selection help in the world.

MR110-06

EXCEL-BASED CHARTS

COMBO-JET® ER/SR/MR/DR/UR Spray Tips - What is the difference?

The sliding scale of droplet size means at any flow rate, you can match your desired spray quality.

UR Series

A STATE OF THE PARTY OF THE PAR					
Comparison Criteria	ER Series Extended Range	SR Series Small Reduction	MR Series Mid-Range Reduction	DR Series Drift Reduction	
Spray Tip Design	Conventional Flat Fan	Pre-orifice Drift Reduction	Pre-orifice Drift Reduction	Pre-orifice Drift Reduction	
Spray Quality @40PSI	Medium	Coarse	Extremely Coarse	Extremely Coarse	
Droplet Size ¹ @40PSI	Smallest (246µ VMD¹)	Medium (371μ VMD¹)	Large (474µ VMD¹)	Very Large (529µ VMD¹)	
% <141μ² % <600μ³	20% of volume < 141µ 94% of volume <600µ	8% of volume < 141μ 89% of volume <600μ	4% of volume $<141\mu$ 74% of volume $<\!600\mu$	2% of volume < 141μ 64% of volume <600μ	
Drift Potential	Most likely to drift	Lower drift potential	Major reduction in drift	Very low drift potential	
Coverage	Best	Excellent	Very good	Good	

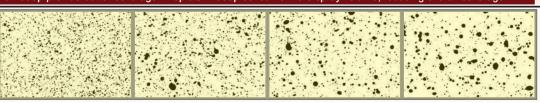
¹Based on an XX110-06 nozzle @ 40 psi (2.75 BAR)

²Droplets smaller than 141µ are more likely to drift. 141µ is used as a standard for estimating driftable fines.

 3 Droplets smaller than 600 μ provide better coverage. Droplets > 600 μ consume more spray volume, reducing overall coverage

DLIII K	teuuctioi		
Dual	Chamber	Drift	Red.

Ultra-Coarse


Ultra Coarse (633µ VMD1)

UR spray tips are specialty spray tips, designed for certain chemical applications that require exceptional drift reduction.

They are not be to be replaced with other spray tip series that are not approved to be on the chemical label. Always follow up-to-date label information.

Refer to chemical application label for maximum pressures, speeds and application information.

More information available at www.wilger.ne

Selecting the Right Spray Quality & Droplet Size

Diffitus Effects

Generally speaking, smaller droplets deposit on the target more effectively than larger droplets, but larger droplets will drift less. So, when balancing drift control and efficacy, ensure to follow chemical labels and guidelines to designate the required spray quality and droplet size.

Where to find target spray quality or droplets lze?

Depending on the chemical, as well as the different methods and modes of applications, some chemical labels may have less/more information. In general, chemical labels will have a description of how it should be applied, in the form of an ASABE spray classification recommendation, or a minimum spray classification (e.g. Spray at least ASABE Coarse). Some chemical label will also stipulate which nozzles can be used.

Application Information: Water Volume: Minimum 22 L per acre.

Minimum volume requirement on chemical label

Reference max pressure for conventional nozzles like ER series. Try avoid conventional (non-drift reduction) spray tips.

Nozzles and Pressure: 30 to 40 psi (210 to 275 kPa) when using conventional flat fan nozzles.

Low drift nozzles may require higher pressures for proper performance. Use a combination of nozzles and pressure designed to deliver thorough, even coverage of ASABE coarse spray. Droplet spectrum recommendation for balance of drift & coverage.

Example Spray Quality Chard by Type of Application

ASABE S-572.1 Classification Category	Color Code	Estimated VMD Range for Spray Quality*	Contact Insecticide & Fungicide	Systemic Insecticide & Fungicide	Contact Foliar Herbicide	Systemic Foliar Herbicide	Soil-Applied Herbicide	Incorporated Soil-Applied Herbicide	Fertilizer
Extremely Fine (XF)	Purple	Under 60							
Very Fine (VF)	Red	60-105							
Fine (F)	Orange	106-235							
Medium (M)	Yellow	236-340							
Coarse (C)	Blue	341-403							
Very Coarse (VC)	Green	404-502							
Extremely Coarse (XC)	White	503-665							
Ultra Coarse (UC)	Black	Over 665							

The above table provides general guidelines regarding droplet size and spray quality used in most spray applications.

It is always required that you carefully read and follow updated chemical manufacturers application label and instructions.

What about Multi-Tip Spraying? When to consider Double-Down & Angled Spraying

Potential problems with HIGH FLOW applications (15GPA+) with a single spray nozzle: Spraying high volume out of a single tip can produce droplets that are 'too large" to be effective for coverage, which make for less effective spray application.

Using multiple spray tips at the same time can provide substantial gains in effective coverage into crops or applications that otherwise would be very difficult to cover; however, multi-tip spraying should not be used without reason.

A typical time to use **Multi-Angle** spraying:

For improved coverage on a vertical growing target (e.g. wheat) when you are needing to paint both sides of the plant with fungicide. (e.g. Fusarium Head Blight)

A typical time to use **Double-Down** spraying:

For high rate applications that rely on consistent coverage in a dense canopy. Use a nozzles to produce a meaningful mix of coarser and finer spray to hit different levels of the canopy.

Pairing already-owned nozzles to make a dual nozzle pair:

Much of the time, an operator already has 1-2 nozzles on the sprayer that could be stacked as a pair, so it is an effective way to use existing nozzles to improve spray application with very little cost.

^{*}NOTE: VMD range does not classify spray quality. Always ensure spray quality is followed first. VMD is a supplementary figure, and it is normal that nozzles with similar VMD can be classified into different spray qualities.

A First-timer's look at Tip Wizard

Beginner's Guide to using Tip Wizard

- 1 Choose application units, spray system type, and search function (e.g. Search for tips)
- **Enter** application rate, spraying speed¹, nozzle spacing, and spray tip angle². Since PWM systems can modulate flow by changing the spray duration, enter the MAX typical spraying speed. ²Spray tip angle required is based on nozzle spacing and boom height. Always maintain 100% overlap.
- 3 Enter target spray quality or target droplet size (microns).

<This is where Tip Wizard gets more useful>

Each chemical used in agricultural spraying has different spray quality requirements for best efficacy and also to maintain tolerable levels of driftable fines for spraying in ideal conditions. Using the droplet size (VMD) allows a more advanced way to filter through series of tips.

Where to find target spray quality or droplet size?

Depending on the chemical, as well as the different methods and modes of applications, some chemical labels may have less/more information. In general, chemical labels will have a description of how it should be applied, in the form of an ASABE spray classification recommendation, or a minimum spray classification (e.g. Spray at least ASABE Coars

_Minimum water requirement on chemical label by law Water Volume: Minimum 22 L per acre.

 Nozzles and Pressure: 30 to 40 psi (210 to 275 kPa) when using conventional flat fan nozzles. Try avoid non-drift reduction tips. Low drift nozzles may require higher pressures for proper performance. Use a combination of nozzles and pressure designed to deliver thorough, even coverage of ASABE coarse spray. Droplet spectrum recommendation for balance of drift & co

Spray Categories as per ASABE S572.1 Classification

■ Extremely Fine ■ Very Fine ■ Fine ■ Medium ■ Coarse ■ Very Coarse □ Extremely Coarse ■ Ultra Coarse

For the example chemical label application information, we'd have a classification of COARSE droplet size to follow. Considering the mode of application as well as the action (e.g. systemic herbicide vs. contact herbicide), you can choose the spray quality that would suit your conditions as best as possible. REMEMBER: the larger the droplet size/VMD, the coarser the spray, resulting in less coverage

For advanced users, using a VMD droplet size can further filter into a spray quality to make it easier to compare one series

For an example, we might find we typically have windier conditions, so try filter our results to stay around 375µ-400µ for our targeted droplet size.

Select the Best Spray Tip for your needs.

Based on the operating speed, pressure, spray quality, and while also gauging the last few columns (VMD, % drift, %

Picking Spray Tips for Auto-Rate Controlled Sprayers

1 STEP 1: Size Your Tip Since the application rate must be consistent, selecting a tip sized to the required rate over the actual sprayer speed range is critical. It is recommended to use Tip Wizard, as it will adjust the chart specifically for any application rate, not just common pairs of rate & speed.

FOCUS ON: SPEED & PRESSURE for a required APPLICATION RATE

Speed and pressure dictate a spray tip's ability to match a rate, and we must ensure our typical travel speed follows a reasonable pressure range. Meet your minimum speed (e.g. turning) within the operational pressure range. Having pressure too low in slow spots can lead to spotty coverage. Once you have referenced your chart to find your applied rate to your speed, you will find a certain nozzle size will be most effective.

*FOR PWM SPRAYERS (DUTY CYCLE): Since you have more control of your pressure, your sprayer will typically allow for a wider selection of tip size. Try to pick a size that allows a duty cycle of 60-80% at your typical sprayer speed, allowing sufficient speed up/down.

STEP 2: Filter to Your Spray Quality Each chemical will require a nozzle spray quality (for labels that do not, consult chemical representative or agronomist, or general guide based on mode of action), since you have selected your tip size (e.g. 110-04) you can now find the best option within the series available in that nozzle size. The ER/SR/MR/DR/UR series differ based on spray quality & drift reduction.

FOCUS ON: 'ASABE \$572' SPRAY CLASSIFICATION

% of Volume < 500p For a relative factor of small

droplets in ideal conditions

Since the pressure is dictating the spray quality, you'll want to filter out any tip series that cannot apply the recommended spray quality.

*FOR PWM SPRAYERS (Pressure Selection): Your spray quality can be changed with changing of sprayer pressure. This means instead of maintaining the required quality through a fixed operating pressure range, you can maintain a more flexible pressure range (provided duty cycle is OK).

3 STEP 3: Double Check It is worthwhile to review extra information provided for the spray tip, and re-evaluate if necessary. While the extra information in extrapolated from lab conditions without active ingredients, and cannot be considered actual, but it does lend to paint a picture of differences between series.

[ADVANCED] FOCUS ON: Spray % <141μ, Spray % <600μ, VMD (μ)

The extra columns reinforce the different spray qualities between different series, but also give the ability to make a rough spray plan for managing real life spraving conditions.

Spray % <141µ: % of total spray that can be considered driftable fines. In ideal conditions, it would be reasonable to assume this spray is NOT going where you want it to go. Due to evaporation before absorption, off-target spray or inversion, very small droplets will not likely hit target. Ideally have a spray tip that minimizes driftable fines, BUT ensure you maintain an acceptable level of coverage.

As speed, wind conditions & boom height increase, observed spray drift will increase substantially.

Spray % <600µ: % of total spray that can be considered small droplets. As % of these useful droplets lowers, coverage is reduced.

Consider it the 'other half' of the spray application, focusing on small droplets for coverage. Whereas you should maintain a low %<141µ, try to keep a %<600μ as high as possible, to maintain better coverage. As a very rough guideline with some usually chemical applications, aim for ~80+% <600μ for systemic applications; or ~90+% <600μ for contact applications; provided drift reduction levels are met and are satisfactory.

VMD (µ): The volumetric median diameter is the middle-point of spray distribution, and can be used to estimate between different series of the same size spray tips (tested on the same laboratory equipment). It is not for comparing between brands of tips. If you are familiar with using a VMD in tip searches, you can use it as an intensive filter to further focus in on tips that might work for your application. For example, if you are happy with spray application with the MR110-04 at 50PSI (346µ VMD), the spray quality might be comparable to an SR110-06 at 50 PSI (337µ VMD). Bear in mind, VMD is used for educational purposes only, and should not dictate application.

For more Guides, Videos & Reading on proper nozzle selection, visit www.wilger.net

We aim to have all sorts of ways to help make the best educated decision in picking and using spray tips, so if there is something you find would be helpful, don't hesitate to reach out and ask. Often, we cannot provide EVERYTHING there is to know in our guides, as it can be overwhelming, so if you are wanting to get more information from an expert, contact WILGER.

Picking Spray Tips for Pulse Width Modulation (PWM) Sprayers

'NOTE: PWM Spray systems differ in some respects (max flow capacity, pulse frequency (Hz), and other general variations in operation. This guide is a general guide that applies to most PWM spray systems, but for clarification would be based on a 10Hz solenoid, with a relative max flow capacity of 1.5 us gpm (this determines the relative pressure drop). Wilger does not own, produce, or have any ownership of PWM spray systems. All rights reserved by their owners.

STEP 1: Size Your Tip Since the application rate must be consistent, selecting a tip sized to the required rate over the actual sprayer speed range is critical. It is recommended to use Tip Wizard, as it will adjust the chart specifically for any application rate.

Since PWM sprayers have control of sprayer pressure, a PWM sprayer will typically allow for a wider selection of tip sizes.

FOCUS ON: SPEED, PRESSURE & DUTY CYCLE (DC%) for a required APPLICATION RATE

Speed, pressure and respective duty cycle dictate a spray tip's ability to match a rate, and we must ensure our typical travel speed follows a reasonable pressure range. Having duty cycles <50%¹ can degrade spray quality and consistency of spray swath, so it is always recommended to be above that.

Try to pick a size that allows a duty cycle of 60-80% at your typical sprayer speed, allowing sufficient speed up/down. If a nozzle is approaching 90-100% at your maximum sprayer speed at your highest pressures, this can be a good indication that a nozzle is sufficiently sized.

Before you look at any coverage/spray quality characteristics of a nozzle, you should have solidified which nozzle SIZE will work best first.

2 STEP 2: Filter to Your Spray Quality Each chemical will require a nozzle spray quality (for labels that do not, consult chemical representative or agronomist, or general guide based on mode of action), since you have selected your tip size (e.g. 110-04) you can now find the best option within the series available in that nozzle size. The ER/SR/MR/DR/UR series differ based on spray quality & drift reduction.

FOCUS ON: 'ASABE \$572' SPRAY CLASSIFICATION

Since the pressure is dictating the spray quality, you'll want to filter out any tip series that cannot apply the recommended spray quality. Since PWM gives full control of sprayer pressure, this will usually filter the results to 1-2 nozzles within a size or series.

STEP 3: Pick your most flexible spray nozzle It is worthwhile to review extra information provided for the spray tip, and re-evaluate if necessary. While the extra information in extrapolated from lab conditions without active ingredients, and cannot be considered actual, but it does lend to paint a picture of differences between series.

The goal is to select a nozzle that can be applied at relatively moderate pressures (e.g. 50-60PSI) when spray conditions are ideal, giving a means to reduce pressure to 30-40PSI to have a 'drift reduction mode' that can be called upon when less ideal conditions arrive.

[ADVANCED] FOCUS ON: Spray % <141μ, Spray % <600μ, VMD (μ)

The extra columns reinforce the different spray qualities between different series, but also give the ability to make a rough spray plan for managing real life spraying conditions.

Spray % <141µ: % of total spray that can be considered driftable fines. In ideal conditions, it would be reasonable to assume this spray is NOT going where you want it to go. Due to evaporation before absorption, off-target spray or inversion, very small droplets will not likely hit target. Ideally have a spray tip that minimizes driftable fines, BUT ensure you maintain an acceptable level of coverage.

As speed, wind conditions & boom height increase, observed spray drift will increase substantially. With wind speeds of 12mph+, it can be expect to have driftable fine spray double. Windy conditions, higher drift sensitivity, and other environmental reasons are serious considerations for what might be an acceptable level of driftable fines.

By general chemical mode of action, you might have a reference point for % driftable fines, which might be generalized as:

Systemic Herbicides: Try maintain driftable fines <10%. (For very sensitive applications and herbicides, the requirement might go down to even 1.5-5%) Contact Herbicides & Fungicides: Try maintain driftable fines <15%. This allows for a consistent and high level of coverage without losing a great deal to driftable fines. It is often part of a good balance between driftable fines and coverage.

Spray % **<600\mu**: % of total spray that can be considered small droplets. As % of these useful droplets lowers, coverage is reduced. Consider it the 'other half' of the spray application, focusing on small droplets for coverage. Whereas you should maintain a low %<141 μ , try to keep a %<600 μ as high as possible, to maintain better coverage. As a very rough guideline with some usually chemical applications, aim for ~80+% <600 μ for systemic applications; or ~90+% <600 μ for contact applications; provided drift reduction levels are met and are satisfactory.

VMD (μ): The volumetric median diameter is the middle-point of spray distribution, and can be used to estimate between different series of the same size spray tips (tested on the same laboratory equipment). It is not for comparing between brands of tips. If you are familiar with using a VMD in tip searches, you can use it as an intensive filter to further focus in on tips that might work for your application. For example, if you are happy with spray application with the MR110-04 at 50PSI (346μ VMD), the spray quality might be comparable to an SR110-06 at 50 PSI (337μ VMD). Bear in mind, VMD is used for educational purposes only, and should not dictate application.

Quick-Start Example: 100 LHA @ 22 kph, on 50cm spacing, with a PWM Spray System, applying SYSTEMIC HERBICIDE (glyphosate)

STEP 1: SIZE THE TIP: Focus on Pressure/Speed Range/Duty Cycle (Try maintain 60-80% duty cycle through full speed/pressure range)

For the best option for a tip size, it'd likely be the **110-06 size.** (110-05 falls short of nozzle size, and 110-08 starts getting too large)

It would apply 100 LHA, 22kph anywhere between 2-4 bar, allowing more than enough room into turn situations if turn compensation is available.

STEP 2: QUALIFY THE SPRAY

Since the chemical label for glyphosate requires a 'even coverage of **ASABE COARSE droplets**', we will notice the ER110-06 is too fine, the SR fits just right, and the MR/DR are a fair bit coarser than required. We could also use a VMD of 400 μ to filter out more.

Note: The MR & DR series are coarser than required, but might be suitable for applicators who have to apply into more drift-sensitive areas.

For this example, we will single out the SR110-06 as our best tip series.

STEP 3: DOUBLE CHECK SR110-06 for max flexibility between 'IDEAL SPRAYING MODE' & 'DRIFT REDUCTION MODE'

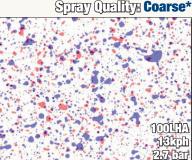
Further considerations: Given the high level of coverage at higher pressures (3.5bar+), this same nozzle could be used for contact herbicides and fungicides to cover more applications.

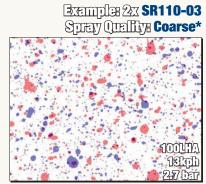
Part No:	et® SR110-06 40287-06 Color o: Not Requíred	: Grey				☆
Pressure (psi) 🖓	Speed Range (mph) 🛭	DC (%) @ 14 mph	Class	VMD (μ) ♀	<141 (%) 😯	<600 (%)
25	3.3-13.2	>100	XC	466µ	3	76
30	3.6-14.4	97	VC	438µ	5	81
35	3.9-15.6	90	VC	414µ	6	84
40	4.2-16.6	84	С	393μ	7	87
45	4.4-17.6	80	С	375µ	8	88
50	4.7-18.6	75	С	358µ	9	90
55	4.9-19.5	72	С	344μ	10	91
60	5.1-20.4	69	С	33 0 µ	11	92

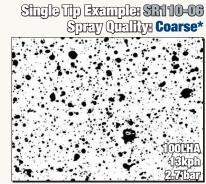
Picking Nozzles for Dual-tip Spraying

Picking two spray tips isn't much different than a single tip. Since the sprayer has some means of adjust the flow to match a flow rate, simply pick a nozzle size that would supply the full rate, and then divide it into parts that would provide the same flow rate.

For example: If a 110-10 nozzle size is required for an application, suitable pairs would be like a '110-06 + 110-04' or '110-05 + 110-05', as the cumulative size would be able to apply the same rate as a single 110-10. For consistency, limit the size difference to two nozzle sizes to ensure consistent back pressure between both nozzles. (e.g. 110-08 +110-02 would not be ideal as the -08 might steal flow from the -02)


1 STEP 1: Size Your Tip Since the application rate must be consistent, selecting a tip sized to the required rate over the actual sprayer speed range is critical. It is recommended to use Tip Wizard, as it will adjust the chart specifically for any application rate, not just common pairs of rate & speed.


FOCUS ON: SPEED & PRESSURE for a required APPLICATION RATE


*FOR PWM SPRAYERS (DUTY CYCLE): Since you have more control of your pressure, your sprayer will typically allow for a wider selection of tip size. Try to pick a size that allows a duty cycle of 60-80% at your typical sprayer speed, allowing sufficient speed up/down.

STEP 2: Filter to Your Spray Quality Each chemical will require a nozzle spray quality (for labels that do not, consult chemical representative or agronomist, or general guide based on mode of action), since you have selected your tip size (e.g. 110-04) you can now find the best option within the series available in that nozzle size. The ER/SR/MR/DR/UR series differ based on spray quality & drift reduction.

| **| Teamulus MR110-04** 中 MR110-02

*IMPORTANT: FOR PWM SPRAYERS (Pressure-drop through solenoid): Depending on the solenoid used, for larger nozzle sizes (or cumulative nozzle sizes for double-down nozzles) there will be greater pressure drop. So, when considering spray quality for the smaller nozzles in a pair, verify the pressure drop for the cumulative size as it will differ from the nozzles individually. With the pressure drop factor, cross-reference the spray quality of the smaller nozzles in the pair for their more realistic spray quality (after pressure drop).

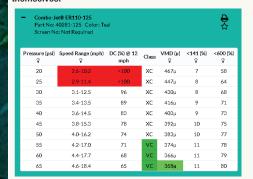
3 STEP 3: Double Check Just like the 'Quick-start guide to picking spray tips', refer to the extra information to qualify nozzles to ensure they will suit your application. Since the pair of nozzles are spraying a fraction of the total weight, there is some synergy between having one as a finer nozzle and the other coarser to produce a more meaningful mix of spray droplet sizes to get where they need to go.

[ADVANCED] FOCUS ON: Spray % <141μ, Spray % <600μ, VMD (μ)

The extra columns reinforce the different spray qualities between different series, but also give the ability to make a rough spray plan for managing real life spraying conditions.

Spray % <141u: % of total spray that can be considered driftable fines. If one nozzle is producing more driftable fines than the other, but when averaging based on the flow, you'd want to ensure you are still at a tolerable driftable fines % given the application.

As speed, wind conditions & boom height increase, observed spray drift will increase substantially. This is especially the case with forward/backward facing


Spray % <600µ: % of total spray that can be considered small droplets. As % of these useful droplets lowers, coverage is reduced.

Since you are splitting a single 'large' nozzle into two smaller nozzles, you should take advantage of getting a much higher %<600µ than possible with a

VMD (µ): As VMD is the middle point in the distribution of spray, and a pair of nozzles will have a blended VMD when both are considered, simply qualify a tip based on acceptable spray quality first, and take note of the two nozzles and

EXAMPLE: 200LHA Glufosinate (Contact Herbicide), on 50cm spacing, traveling 19 kph, using a PWM spray system

STEP 1: Using Tip Wizard (or nozzle charts), a 110-125 nozzle size would suffice for travel speed and pressure range. The ER110-125 is shown as an example. With this 110-125 nozzle size, we know a nozzle pair adding to a ~110-125 would be suitable for the application rate. (e.g 110-06 + 110-06) With this, split the nozzle size into portions and search for a '10 GPA' nozzle and '10GPA' nozzle for example, based on a fraction of total flow. NOTE: There is extra pressure drop through a solenoid, so keep that in mind when selecting nozzles as the spray quality will differ from nozzles operating by

STEP 2: By chemical label, Glufosinate is to be applied as a ASABE medium spray quality or coarser. Qualify spray nozzles suitable for chemical label requirement.

STEP 3: Qualify nozzle pair based on spray quality, and pick based on most suitable % driftable fines (ideally <15%) and % coverage (ideally >90%)

Example Result: Double-Down SR110-06 would provide upwards of 10%+ more volume made of small droplets, without increasing driftable fines.

The spray quality is within the 'coarse' spray quality, just outside MEDIUM spray quality. An ER series could be substituted to provide a mix of even finer spray into the dual nozzle setup.

Total flow would be the same as a 110-12, which would be nominally smaller than a 110-125.

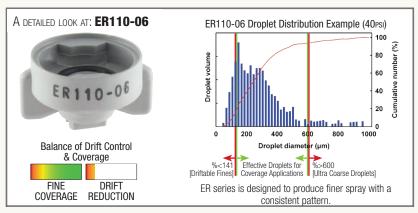
COMBO-JET ER Series Spray Tips

The ER series spray tip is a conventional flat fan nozzle, emphasizing consistent spray pattern with relatively fine spray. All ER nozzles are manufactured with a stainless steel tip.

Longer Lasting Stainless Tips

Less Plugged **Nozzles**

Perfect for PWM **Sprayers**



Consistent Pattern at Lower PSI

Acid Resistant Nozzles

COMBO-JET® ER80° ASABE S572.1 Spray Quality Chart

					<u> </u>	-J 40-					
Pressure (bar)	1.25	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
ER80-01	F	F	F	F	F	F	F	F	F	E	F
ER80-015	F	F	F	F	F	F	F	F	F	F	F
ER80-02	F	F	F	IL.	F	F	F	F	H.	ш	F
ER80-025	M	M	F	F	F	F	F	F	F	F	F
ER80-03	M	M	F	H.	Щ	F	F	F	Щ	щ	щ
ER80-04	M	M	M	M	F	F	F	F	H.	ш	ш
ER80-05	C	С	M	M	M	M	M	M	H.	ш	ш
ER80-06	C	С	C	С	С	M	M	M	M	M	M
ER80-08	XC	VC	C	M	M	F	F	F	F	F	F
ER80-10	XC	XC	XC	C	C	C	M	M	M	F	I.
ER80-125		XC	XC	VC	C	C	C	C	C	M	M
ER80-15		XC	XC	XC	C	C	C	M	M	M	M
ER80-20		UC	XC	XC	XC	VC	C	C	C	C	M
ER80-25		UC	XC	XC	XC	VC	C	C	C	C	M
ER80-30		UC	UC	XC	XC	XC	XC	XC	VC	VC	C
ER80-40				XC	XC	XC	XC	XC	XC	VC	VC
ER80-50				XC	XC	XC	XC	XC	XC	VC	VC
ER80-60				XC	XC	XC	XC	XC	XC	VC	VC

COMBO-JET® FR110° ASARF S572.1 Spray Quality Chart

OUNDO-JET	LIL I	IU A	UADE	<u> </u>	<u>. 1 Op</u>	iay Q	uanty	Ullai	<u> </u>		
Pressure (bar)	1.25	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
ER110-01	F	F	F	F	F	F	F	F	F	F	F
ER11-015	F	F	F	F	F	F	F	F	F	F	F
ER110-02	F	F	F	F	F	F	F	F	F	F	F
ER110-025	F	F	F	F	F	F	F	F	F	F	F
ER110-03	F	F	F	F	F	F	F	F	F	F	F
ER110-04	M	M	M	M	F	F	F	F	F	F	F
ER110-05	M	M	M	M	F	F	F	F	F	F	F
ER110-06	C	C	M	M	M	M	M	F	F	F	F
ER110-08	C	C	C	M	M	M	M	F	F	F	F
ER110-10	VC	C	C	C	С	M	M	M	M	F	F
ER110-125		XC	XC	XC	VC	C	C	С	C	C	C
ER110-15		XC	XC	XC	VC	C	C	C	C	С	C
ER110-20		UC	XC	XC	XC	XC	XC	VC	VC	C	C
ER110-25		UC	XC	XC	XC	XC	XC	VC	VC	C	C
ER110-30		UC	XC	XC	XC	XC	XC	XC	XC	VC	VC

COMBO-JET® ER Series Specifications

Approved for PWM Spray Systems Compatible with all PWM Spray systems/Hz.

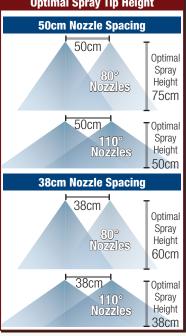
Operating Pressure 20-100PSI

Flat Fan Nozzle Type Conventional Flat Fan

Nozzle Materials Spray Tip: Stainless Steel O-ring: FKM, 13mm x 3mm #40260-00 (viton avail.) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)


Spray quality is categorized based on Dv0.1 and VMD droplet sizes. Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Chart shown includes spray quality at lested data points as well as extraondated data points. extrapolated data points.

Fine (F) Medium (M) Coarse (C)

■ Very Coarse (VC)
□ Extremely Coarse (XC)
■ Ultra Coarse (UC)

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malvern

Optimal Spray Tip Height

COMBO-JET SR Series Spray Tips

The SR series spray tip is a closed-chamber, pre-orifice drift reduction nozzle, emphasizing a first stage of drift reduction. The SR series balances excellent coverage spray with significant drift reduction upwards of 50%+.

Longer Lasting Stainless Tips

Perfect

for PWM

Sprayers

Solid Mass

Spray

Droplets

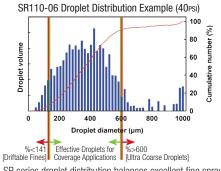
Less **Plugged Nozzles**

Consistent

Pattern at

Lower PSI

Acid


Resistant

Nozzles

Balance of Drift Control & Coverage

FINE DRIFT COVERAGE REDUCTION

SR series droplet distribution balances excellent fine spray coverage while reducing driftable fines.

COMBO-JET® SR80° ASABE S572.1 Spray Quality Chart

Pressure (bar)	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
SR80-01	C	M	F	F	F	F	F	F	F	F
SR80-015	C	M	M	M	F	F	F	F	F	F
SR80-02	C	M	M	M	F	F	F	F	F	F
SR80-025	C	C	С	M	M	M	M	M	F	F
SR80-03	C	C	С	С	C	M	M	M	M	M
SR80-04	C	C	С	С	С	С	M	M	M	M
SR80-05	VC	C	С	С	С	С	С	С	M	M
SR80-06	XC	VC	VC	C	C	С	C	С	С	C
SR80-08	UC	UC	XC	XC	XC	XC	VC	VC	C	C
SR80-10	UC	UC	UC	XC	XC	XC	XC	XC	VC	VC
SR80-125	UC	UC	UC	XC	XC	XC	XC	XC	VC	VC
SR80-15	UC	UC	UC	UC	UC	XC	XC	XC	XC	XC
SR80-20	UC	UC	UC	UC	UC	XC	XC	XC	XC	XC
SR80-25	UC	UC	UC	XC	XC	XC	XC	XC	XC	XC
SR80-30		UC	UC	UC	XC	XC	XC	XC	XC	XC

COMBO-JET® SR110° ASABE S572.1 Spray Quality Chart

Pressure (bar)	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
SR11-015	M	M	F	F	F	F	F	F	F	F
SR110-02	M	M	F	F	F	F	F	F	F	F
SR110-025	M	M	M	M	F	F	F	F	F	F
SR110-03	C	C	C	C	M	M	M	M	F	F
SR110-04	C	C	C	C	M	M	M	M	M	M
SR110-05	VC	C	C	C	C	C	M	M	M	M
SR110-06	XC	VC	C	C	C	C	C	С	M	M
SR110-08	UC	XC	XC	XC	VC	C	C	С	C	C
SR110-10	UC	XC	XC	XC	XC	VC	C	С	C	C
SR110-125	UC	UC	XC	XC	XC	XC	VC	C	C	C
SR110-15	UC	UC	UC	UC	XC	XC	XC	XC	XC	XC
SR110-20	UC	UC	UC	XC	XC	XC	XC	XC	XC	VC
SR110-25	UC	UC	UC	XC	XC	XC	XC	XC	XC	VC

COMBO-JET® SR Series **Specifications**

Approved for PWM Spray Systems Compatible with all PWM Spray systems/Hz.

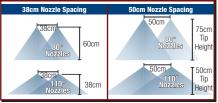
Operating Pressure 25-100PSI

Flat Fan Nozzle Type Closed-Chamber, Pre-Orifice Drift Reduction

Nozzle Materials Spray Tip: Stainless Stee O-ring: FKM, 13mm x 3mm #40260-00 (viton avail.) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)


Spray quality is categorized based on Dv0.1 and VMD droplet sizes.
Objective 3rd party testing data, from spray spectrum recording
equipment (without wind tunnel use), has been used to classify spray
quality for this chart. Chart shown includes spray quality at tested data
points as well as extrapolated data points.

Fine (F) Medium (M) Coarse (C)

Very Coarse (VC) Extremely Coarse (XC)
Ultra Coarse (UC)

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malvern.

Optimal Spray Tip Height

LERAP Ratings for SR Series As of January 2021

★★★ 75% ★★ 50% 1.0-1.5BAR 1.6-3.0BAR

For the updated list of nozzles, visit www.wilger.net/LERAP

More information on LERAP certification, process, and the most up to date listing of approved nozzles and their ratings, is available from the $\mbox{\sc Health}$ and Safety Executive (HSE), also available online @

https://secure.pesticides.gov.uk/SprayEquipment

0011	 	011 1		 0 10	,			firob:	aooi		· · · · · ·	
-01	-02	-025	-03	-05	-06	-08	-10	-125		-20	-25	-30
40285-01	40285-01	40285-025	40285-03	40285-05	40285-06	40285-08	40285-10	40285-125		40285-20	40285-25	40285-30

COMBO-JET MR Series Spray Tips

The MR series spray tip is a closed-chamber, pre-orifice drift reduction nozzle, emphasizing a second stage of drift reduction. The MR series balances great coverage spray with significant drift reduction upwards of 75%+.

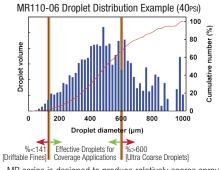
Longer Lasting Stainless Tips

Perfect

for PWM

Sprayers

Drift



Reduction

Balance of Drift Control & Coverage

FINE DRIFT COVERAGE REDUCTION

MR series is designed to produce relatively coarse spray with minimal drift.

Solid Mass Spray Droplets

Acid Resistant **Nozzles**

Lower PSI

COMBO-JET® MR80° ASABE S572.1 Spray Quality Chart

Pressure (bar)	2	2.5	3	3.5	4	4.5	5	5.5	6
MR80-005	M	F	F	F	F	F	F	F	F
MR80-0067	F	F	F	F	F	F	F	F	F
MR80-01	M	F	F	F	F	F	F	F	F
MR80-015	C	C	C	M	M	M	M	F	F
MR80-02	C	C	C	C	M	M	M	M	M
MR80-025	VC	VC	C	C	С	С	C	C	С
MR80-03	VC	VC	C	C	C	C	C	C	С
MR80-04	VC	C	C	C	C	C	C	C	С
MR80-05	XC	XC	VC	VC	VC	C	C	C	С
MR80-06	XC	XC	XC	VC	VC	VC	VC	C	С
MR80-08	UC	UC	UC	XC	XC	XC	VC	VC	C
MR80-10	UC	UC	UC	UC	XC	XC	XC	XC	XC
MR80-125	UC	UC	UC	UC	UC	UC	XC	XC	XC
MR80-15	UC	UC	XC	XC	XC	XC	VC	VC	C
MR80-20	UC	UC	UC	UC	XC	XC	XC	XC	XC
MR80-25	UC	UC	UC	UC	UC	UC	UC	UC	XC
MR80-30	UC	UC	UC	UC	UC	UC	UC	UC	XC
MR80-40		UC	UC	UC	UC	XC	XC	XC	XC

COMBO-JET® MR110° ASABE S572.1 Spray Quality Chart

Pressure (bar)	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
MR11-015	C	C	C	M	M	M	F	F	F	F
MR110-02	C	С	C	M	M	M	M	F	F	F
MR110-025	C	С	C	C	C	С	M	M	M	M
MR110-03	VC	VC	C	C	C	С	C	С	C	M
MR110-04	XC	VC	C	C	C	С	C	С	C	M
MR110-05	XC	XC	VC	VC	VC	C	C	С	C	С
MR110-06	XC	XC	XC	XC	VC	VC	VC	VC	C	С
MR110-08	UC	UC	UC	XC	XC	XC	XC	XC	VC	C
MR110-10	UC	UC	UC	XC	XC	XC	XC	XC	VC	C
MR110-125	UC	UC	UC	UC	UC	UC	UC	UC	XC	XC
MR110-15	UC	UC								
MR110-20	UC	UC	UC	UC	UC	UC	UC	UC	XC	XC

COMBO-JET® MR Series Specifications

Approved for PWM Spray Systems Compatible with all PWM Spray systems/Hz.

Operating Pressure 30-100PSI

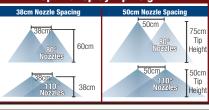
Flat Fan Nozzle Type Closed-Chamber, Pre-Orifice Drift Reduction

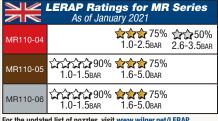
Nozzle Materials Spray Tip: Stainless Steel Repl.O-ring: FKM, 13mm x 3mm #40260-00 (viton avail) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)

Spray quality is categorized based on Dv0.1 and VMD droplet sizes.


Objective 3rd party testing data, from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Chart shown includes spray quality at tested data points as well as extrapolated data points.


Fine (F) Medium (M) Coarse (C)

■ Very Coarse (VC)
□ Extremely Coarse (XC)
■ Ultra Coarse (UC) Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer

Optimal Spray Tip Height

(PDPA); tips sized over 110-06 verified on Malvern.

For the updated list of nozzles, visit www.wilger.net/LERAP

More information on LERAP certification, process, and the most up to date listing of approved nozzles and their ratings, is available from the Health and Safety Executive (HSE), also available online @

https://secure.pesticides.gov.uk/SprayEquipment

JKI Nozzle Ratings for MRs

COMBO-JET® MR Pre-orifices - by size [Replacement Only]

-005	-0067	-01	-015	-02	-025	-03	-04	-05	-06	-08		-125	-15	-20	-25	-30	-40
10285-005	40285-007	40285-01	40285-015	40285-01	40285-025	40285-03	40285-04	40285-05	40285-06	40285-08	40285-10	40285-125	40285-15	40285-20	40285-25	40285-30	40285-40

COMBO-JET DR Series Spray Tips

The DR series spray tip is a closed-chamber, pre-orifice drift reduction nozzle, emphasizing a third stage of drift reduction. The DR series balances good coverage spray with extremely low driftable fines, upwards of a 90% reduction in driftable fines.

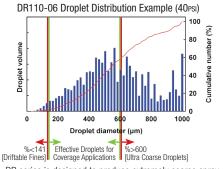
Longer Lasting Stainless Tips

Perfect

for PWM

Sprayers

Drift


Superior Reduction

A DETAILED LOOK AT: DR110-06 Consistent Pattern at Lower PSI

Balance of Drift Control & Coverage

FINE DRIFT COVERAGE REDUCTION

DR series is designed to produce extremely coarse spray with very minimal drift.

Solid Mass Spray Droplets

Acid Resistant **Nozzles**

COMBO-JET® DR80° ASABE S572.1 Spray Quality Chart

Pressure (bar)	2	2.5	3	3.5	4	4.5	5	5.5	6
DR80-005	C	M	М	F	F	F	F	F	F
DR80-0067	C	C	М	M	М	F	F	F	F
DR80-01	C	С	М	M	M	M	F	F	F
DR80-015	VC	VC	C	C	С	C	С	C	C
DR80-02	XC	VC	VC	VC	C	C	С	C	C
DR80-025	XC	VC	VC	VC	C	C	С	C	C
DR80-03	XC	XC	VC	VC	VC	C	С	C	С
DR80-04	XC	XC	XC	XC	XC	VC	VC	C	С
DR80-05	XC	XC	XC	XC	XC	XC	VC	VC	VC
DR80-06	XC	XC	XC	XC	XC	XC	XC	XC	VC
DR80-08	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-10	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-125	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-15	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-20	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-25	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-30	UC	UC	UC	UC	UC	UC	UC	UC	XC

COMBO-JET® DR110° ASABE S572.1 Spray Quality Chart

Pressure (bar)	2	2.5	3	3.5	4	4.5	5	5.5	6
DR11-015	C	C	C	C	C	C	M	M	M
DR110-02	VC	VC	C	C	C	C	C	C	C
DR110-025	VC	VC	C	C	C	C	C	C	C
DR110-03	XC	XC	VC	VC	C	C	C	C	C
DR110-04	XC	XC	VC	VC	VC	C	C	C	C
DR110-05	XC	XC	XC	XC	XC	XC	VC	VC	VC
DR110-06	XC	XC	XC	XC	XC	XC	XC	VC	VC
DR110-08	UC	UC	UC	UC	UC	UC	XC	XC	XC
DR110-10	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR110-125	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR110-15	UC	UC	UC	UC	UC	UC	UC	UC	UC

COMBO-JET® DR Pre-orifices - by tip size [Replacement Only]

COMBO-JET® DR Series Specifications

Approved for PWM Spray Systems Compatible with all PWM Spray systems/Hz.

> Operating Pressure 30-100PSI

Flat Fan Nozzle Type Closed-Chamber, Pre-Orifice Drift Reduction

Spray Tip: Stainless Steel Repl.O-ring: FKM, 13mm x 3mm #40260-00 (viton avail) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)

Spray quality is categorized based on Dv0.1 and VMD droplet sizes.
Objective 3rd party testing data, from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Chart shown includes spray quality at tested data points as well as extrapolated data points.

Fine (F) Medium (M) Coarse (C)

Very Coarse (VC) Extremely Coarse (XC)
Ultra Coarse (UC)

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malvern.

Optimal Spray Tip Height

· · · · · · · · · · · · · · · · · · ·	, , ,
38cm Nozzle Spacing	50cm Nozzle Spacing
38cm 80° Nozzles	50cm 30° Nozziles 75cm Tip Height
38cm 110° Nozzles 38cm	50cm 110° Nozzies Tip Height

	LERAP Ratings for DR Series As of January 2021
DR110-025	☆☆☆ 75% ☆☆ 50% 1.0-2.5bar 2.6-3.5bar
DR110-03	↑↑↑↑ 90% ↑↑↑ 75% ↑↑50% 1.0-1.5bar 1.6-2.5bar 2.6-3.5bar
DR110-04	☆☆☆ 75% 1.0-5.0bar
DR110-05	☆☆☆90% ☆☆☆75% 1.0-1.5bar 1.6-5.0bar
DR110-06	↑↑↑↑ 90% ★★↑ 75% 1.0-3.0Bar 3.1-5.0Bar

For the updated list of nozzles, visit www.wilger.net/LERAP

More information on LERAP certification, and the most up to date listing of tested nozzles, visit https://secure.pesticides.gov.uk/SprayEquipment

JKI Nozzle Ratings for DR Series

					, .
125	-15	-20	-25	-30	
	40005.45	40005.00	40005.05	10005.00	

COMBO-JET UR Series* Spray Tips

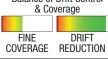
*U.S. Patent No. 10,603,681

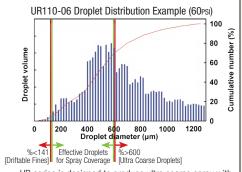
The UR series spray tip is a dual-chamber, pre-orifice drift reduction nozzle, emphasizing the coarsest stage of drift reduction. The UR series is heavily suited to ultra-low driftable fines, emphasizing drift reduction over coverage.

Approved for Dicamba Mixes

Perfect

for PWM


Sprayers



Ultra Low Spray Drift

Balance of Drift Control & Coverage

UR series is designed to produce ultra coarse spray with extremely little drift.

Spray Droplets

Acid Resistant Nozzles

Tips

COMBO-JET® UR110° ASABE S572.1 Spray Quality Chart

Pressure (bar)	2	2.5	3	3.5	4	4.5	5	5.5	6
UR110-025	UC	UC	UC	UC	UC	XC	XC	XC	VC
UR110-03	UC	UC	UC	UC	UC	UC	UC	XC	XC
UR110-04	UC	UC	UC	UC	UC	UC	UC	UC	UC
UR110-05	UC	UC	UC	UC	UC	UC	UC	UC	UC
UR110-06	UC	UC	UC	UC	UC	UC	UC	UC	UC
UR110-08	UC	UC	UC	UC	UC	UC	UC	UC	UC
UR110-10	UC	UC	UC	UC	UC	UC	UC	UC	UC

COMBO-JET® UR Series* Pre-orifice Sets [Replacement only]

-06 40292-2 *U.S. Patent No. 10.603.681

		ngs for UR nuary 2021	Series
UR110-04		75% 2.0-3.0 _{BAR}	50% 4.0-6.0bar
		Ref. G-2184	Ref. G-2184
	90%	75%	
UR110-05	2.0 _{BAR}	3.0-6.0bar	
	Ref. G-2185	Ref. G-2185	
	an%	75%	

4.0-6.0BAR

Ref. G-2189

2.0-3.0_{BAR}

Ref. G-2189

Optimal Spra	y Tip Height
38cm Nozzle Spacing	50cm Nozzle Spacing
38cm 80° Nozzles 60cm	50cm 30° Nozziles 75cm Tip Height
38cm 110° Nozzles 38cm	50cm 110° Nozzlas Height

COMBO-JET® UR Series Specifications

Approved for PWM Spray Systems Compatible with all PWM Spray systems/Hz.

Operating Pressure 35-100PSI

Flat Fan Nozzle Type Dual Closed-Chamber, Pre-Orifice Drift Reduction

Repl.O-ring: FKM, 13mm x 3mm #40260-00 (viton avail)

Nozzle Materials Spray Tip: Stainless Steel

Cap: Glass-reinforced Polypropylene **ASABE Spray Classification**

(ASABE S572.1 Standard)
Spray quality is categorized based on Dv0.1 and VMD droplet sizes.
Objective 3rd party testing data, from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Chart shown includes spray quality at tested data points as well as extrapolated data points

Fine (F) Medium (M) Coarse (C)

Very Coarse (VC) Extremely Coarse (XC) Ultra Coarse (UC)

UR Nozzles verified on Malvern.

COMBO-JET 80° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

IOW CHEII	iicai i	abeii	iozzie req	lanemen	.5.															
Nozzle	Flow		Annli	ication Rate	in Litres/He	rtare	VM	D (Droplet Siz	re in u)	%<14	111 (Dri	ft %)· (%<200	u (Drif	t %)· %	<600u	(Smal	Dropl	ets)	
Size &	Rate	Tip			zzle Spacino			Series	I		Series	,.,,			Series				Series	
Angle	L/min	BAR			peed in km/		Class VMD		Close			-600	_		_	_			_	
Aligie		Ti																	<141	
	Flow	Tip			la on 50cm			(40270-005)											(40280	
	L/min	BAR	20L/Ha	30L/Ha	40L/Ha	50L/Ha	Class VMD	<141 <600		VIVID	<141	<000	Class	VIVID	<141	<600	Class	VIVID	<141	<000
	0.127		7.6	5.1	3.8	3.1	F 172	30% 100%												
	0.140		8.4	5.6	4.2	3.4	F 163	36% 100%					С	281		100%	C	339		
80	0.161		9.7	6.4	4.8	3.9	F 150	45% 100%					M	240		100%	С	282		100%
-005	0.180		11.0	7.2	5.4	4.3	F 141	52% 100%					F	212		100%	M	245		100%
Nozzles	0.197		12.0	7.9	5.9	4.7	F 133	58% 100%					F	192		100%	M	218		100%
	0.213	3.50	13.0	8.5	6.4	5.1	F 127	63% 100%					F	177	33%	100%	F	198	26%	100%
	0.228	4.00	14.0	9.1	6.8	5.5	F 122	67% 100%					F	164	38%	100%	F	181	30%	100%
	0.242	4.50	15.0	9.7	7.3	5.8	F 118	71% 100%					F	154	41%	100%	F	168	33%	100%
	0.255	5.00	15.0	10.0	7.6	6.1	F 115	74% 100%					F	145	45%	100%	F	157	36%	100%
	0.267	5.50	16.0	11.0	8.0	6.4	VF 112	77% 100%					F	138		100%	F	148		100%
	0.279		17.0	11.0	8.4	6.7	VF 109	80% 100%					F	131		100%	F	140		100%
	Flow	Tip			la on 50cm		ER80-0067	(40270-0067)		-0067	(40288	-0067)	MR80-)-0067)	DR80-	-0067	(40280	
	L/min	BAR	20L/Ha	30L/Ha	40L/Ha	50L/Ha	Class VMD		Class			<600		VMD		<600		VMD		<600
	0.171		10.0	6.8	5.1	4.1	F 207	18% 100%		VIVID	×111	~000	Oldoo	VIVID	×111	1000	Oldoo	VIVID	\	1000
	0.187		11.0	7.5	5.6	4.5	F 193	24% 100%					М	249	13%	100%	С	360	11%	100%
80	0.216		13.0	8.6	6.5	5.2	F 173	34% 100%					F	214		100%	Č	313		
-0067	0.241		14.0	9.7	7.2	5.8	F 159	41% 100%					F	191		100%	Č	280		100%
							100						F							
Nozzles	0.265		16.0	11.0	7.9	6.3	1.0	47% 100%	-				F	174		100%	M	256		100%
	0.286		17.0	11.0	8.6	6.9	F 140	53% 100%	-				F	161		100%	M	237		
	0.305		18.0	12.0	9.2	7.3	F 133	57% 100%						150		100%	M	222		100%
	0.324		19.0	13.0	9.7	7.8	F 127	61% 100%					F	141		100%	F		21%	
	0.341		20.0	14.0	10.0	8.2	F 122	64% 100%	-				F	134		100%	F			
	0.358		21.0	14.0	11.0	8.6	F 118	68% 100%					F	127		100%	F		24%	
	0.374	6.00	22.0	15.0	11.0	9.0	F 114	71% 100%					F	122		100%	F	182		100%
	Flow	Tip	Application		la on 50cm		ER80-01	(40270-01)	SR8	0-01	(4028		MR8	0-01	(4029		DR8		(4028	
	L/min	BAR	20L/Ha	30L/Ha	40L/Ha	50L/Ha	Class VMD	<141 <600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
	0.255		15.0	10.0	7.6	6.1	F 181	26% 100%												
	0.279	1.50	17.0	11.0	8.4	6.7	F 171	31% 100%	С	279	29%	97%								
80	0.322	2.00	19.0	13.0	9.7	7.7	F 158	40% 100%	M	238	29%	97%	M	222	22%	97%	С	316	9%	94%
-01	0.360	2.50	22.0	14.0	11.0	8.6	F 148	46% 100%	F	210	29%	97%	F	200	28%	97%	С	286	12%	95%
Nozzles	0.395	3.00	24.0	16.0	12.0	9.5	F 140	52% 100%	F	190	29%	97%	F	184	32%	97%	M	264	15%	97%
	0.426	3.50	26.0	17.0	13.0	10.0	F 134	57% 100%	F	174	29%	98%	F	172	36%	97%	M	247	17%	98%
	0.456	4.00	27.0	18.0	14.0	11.0	F 129	61% 100%	F	162	29%	98%	F	161	40%	97%	M	233	19%	99%
	0.484		29.0	19.0	15.0	12.0	F 124	64% 100%		151	29%	98%	F	153	43%		М	221		100%
	0.510		31.0	20.0	15.0	12.0	F 121	67% 100%		143	29%	98%	F	146	45%		F	211		100%
	0.535		32.0	21.0	16.0	13.0	F 117	70% 100%		135	29%	98%	F	139	48%		F	202		100%
	0.558		34.0	22.0	17.0	13.0	F 115	73% 100%		129	29%		F	134	50%		F			
	Flow	Tip			la on 50cm		ER80-015	(40270-015)		0-015	(40288		MR80			0-015)	DR80		(40280	
	L/min	BAR	35L/Ha	50L/Ha	60L/Ha	75L/Ha	Class VMD	<141 <600		VMD	<141					<600				
	0.382	1.25	13.0	9.2	7.6	6.1	F 204	19% 100%												
	0.419		14.0	10.0	8.4	6.7	F 195	22% 100%	С	305	10%	94%			İ					
80	0.484		17.0	12.0	9.7	7.7	F 181	28% 100%		267	16%	95%	С	328	10%	94%	VC	422	4%	86%
-015	0.541	2.50	19.0	13.0	11.0	8.6	F 171	32% 100%		240	20%	96%	Č	296	13%	96%	VC	392	5%	89%
Nozzles	0.592		20.0	14.0	12.0	9.5	F 163	36% 100%		221	24%	96%	Č	273	15%		C	369	6%	91%
14022103	0.640		22.0	15.0	13.0	10.0	F 157	39% 100%		206	27%		M	254	17%		Č	351	7%	92%
	0.684		23.0	16.0	14.0	11.0	F 152	42% 100%		194	29%	97%	M	239	19%	98%	Č	336	8%	93%
	0.725	4.50	25.0	17.0	15.0	12.0		44% 100%		183	32%		M	227	21%		C	323	8%	94%
		5.00	26.0	18.0	15.0	12.0	F 147 F 144	46% 100%		175	34%	98% 98%	M	216	22%	99%	C	312	9%	95%
	0.765												F							
	0.802		27.0	19.0	16.0 17.0	13.0	F 140 F 137	48% 100%		167	36%	98%	F	207 199	23%	99%	C C	303	10%	95%
	0.838 Flow	6.00	29.0	20.0	la on 50cm	13.0	F 137 ER80-02	50% 100% (40270-02)		160 0-02	37% (4028	98%	MR80		25%	90-02)		294 0-02	10%	96%
	L/min	Tip BAR	40L/Ha	50L/Ha	60L/Ha	70L/Ha	Class VMD	<141 <600				<600		VMD		<600		VMD	<141	
	0.510		15.0	12.0	10.0	8.7	F 188	26% 100%		VIVIU	<u> 141</u>	~000	viass	VIVID	<u> 141</u>	\000	viass	VIVID	141	<u> </u>
										207	10%	020/	\vdash					\vdash	\vdash	\vdash
00	0.558		17.0	13.0	11.0	9.6	F 181	29% 100%					C -	200	On/	0.40/	٧c	4EO	20/	000/
80	0.645		19	15.0	13.0	11.0		34% 100%			15%		C	329	8%	94%	XC	459	3%	80%
-02	0.721		22	17.0	14.0	12.0	F 164				19%	90%	C	307	10%		VC	431	4%	83%
Nozzles	0.790		24	19.0	16.0	14.0	F 159	40% 100%		227	22%		C		12%		VC	410	5%	85%
	0.853		26	20.0	17.0	15.0	F 154	42% 100%			24%		С		14%		VC	392	5%	87%
	0.912		27	22.0	18.0	16.0	F 150	44% 100%		206	27%		M		15%		C	378	6%	88%
	0.967		29	23.0	19.0	17.0	F 147	46% 100%			29%		M		17%		С	366	6%	89%
	1.019		31	24.0	20.0	17.0	F 144	47% 100%		191	30%		M		18%		C	355	7%	90%
	1.069		32	26.0	21.0	18.0	F 142	49% 100%		185	32%		M	239			C	346	7%	91%
	1.117		34	27.0	22.0	19.0	F 139			179			M	233			C	338	8%	91%
	Flow	Tip			la on 50cm		ER80-025	(40270-025)		0-025	(4028				(4029			0-025	(40280	
	L/min		50L/Ha	60L/Ha	70L/Ha	80L/Ha		<141 <600		VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
	0.637		15	13.0	11.0	9.6		16% 100%		00:	-c:	0051	\vdash					<u> </u>	<u> </u>	\vdash
	0.698		17	14.0	12.0	10.0	M 227	18% 100%		331	7%	90%								
	■ 0 806	2.00	19	16.0	14.0	12.0	F 211	23% 100%		299	11%		VC	430	4%	80%	XC	463	3%	77%
80		0 50	22	18.0	15.0	14.0		26% 100%		277	14%		VC	396	6%	83%	VC	440	4%	80%
-025	0.901				17.0	15.0	F 189	29% 100%		260	16%		С	371	7%	86%	VC	421	5%	82%
	0.901 0.987	3.00	24	20.0																
-025	0.901	3.00	24 26	20.0	18.0	16.0	F 182	32% 100%	M	247	18%	95%	С	351	8%	87%	VC	406	5%	83%
-025	0.901 0.987	3.00 3.50						32% 100% 34% 100%		247 236	18% 20%		C C	351 334			VC C			
-025	0.901 0.987 1.066	3.00 3.50 4.00	26	21	18.0	16.0	F 182		M	236		96%	C C		8%	87% 88%	VC	406	5%	83%
-025	0.901 0.987 1.066 1.140	3.00 3.50 4.00 4.50	26 27	21 23	18.0 20.0	16.0 17.0	F 182 F 175	34% 100% 36% 100%	M	236 226	20%	96% 96%	C C	334	8% 9%	87% 88% 89%	VC C	406 394	5% 6%	83% 84%
-025	0.901 0.987 1.066 1.140 1.209 1.274	3.00 3.50 4.00 4.50 5.00	26 27 29	21 23 24	18.0 20.0 21.0 22.0	16.0 17.0 18.0	F 182 F 175 F 170	34% 100% 36% 100% 37% 100%	M M M	236 226 218	20% 21%	96% 96% 97%	C C C	334 320	8% 9% 10%	87% 88% 89% 90%	VC C C	406 394 383 373	5% 6% 6%	83% 84% 85%
-025	0.901 0.987 1.066 1.140 1.209	3.00 3.50 4.00 4.50 5.00 5.50	26 27 29 31	21 23 24 25	18.0 20.0 21.0	16.0 17.0 18.0 19.0	F 182 F 175 F 170 F 165 F 161	34% 100% 36% 100% 37% 100%	M M M	236 226 218 211	20% 21% 23%	96% 96% 97% 97%	C C	334 320 308 298	8% 9% 10% 10%	87% 88% 89% 90% 91%	VC C C	406 394 383	5% 6% 6% 7% 7%	83% 84% 85% 86%

COMBO-JET 80° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

ASABE Spray Classification (ASABE 5572.1 Standard)
Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.) can vary between testing equipment and method, and is provided as an educational resource only.

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malwern.

VMD (Volume Median Diameter) The median droplet (in μ) for a sprayed volume. Half of the volume is made of droplets smaller, with

% <141μ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially.

% <600µ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage. As % of useful droplets lowers, overall coverage is reduced.

Nozzle Size &	Flow Rate	Tip BAR		on 50cm No	in Litres/He	1	Class	ER80°	Series			SR80°	Series			MR80°	Series			DR80°	Series	
Angle	L/min Flow	Tip			peed in km/ la on 50cm :		ER8	VMD 0-03	(4027			0-03		38-03)	MR8			90-03)	DR8		(4028	
	L/min	BAR	60L/Ha	75L/Ha	100L/Ha	120L/Ha				<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<6
	0.765 0.838		15 17	12.0 13.0	9.2 10.0	7.6 8.4	M	238 229	16% 18%	99% 99%	С	388	6%	87%								
80	0.967		19	15	12.0	9.7	F	215	22%	99%	Č	349	9%	89%	VC	437	4%	80%	XC	485	3%	71
-03	1.081	2.50	22	17	13.0	11.0	F	205	25%	99%	С	321	11%	90%	VC	404	6%	84%	XC	458	4%	75
Nozzles	1.184		24	19	14.0	12.0	F	197	27%	99%	C	300	13%	91%	C	378	7%	86%	VC	437	5%	78
	1.279		26	20	15.0	13.0	F	191	29%	99%	С	283	15%	92%	C	358	8%	88%	VC	420	5%	80
	1.368 1.451		27 29	22 23	16 17	14.0 15.0	-	186 181	31%	99% 99%	M	269 258	16% 18%	93%	C	341 327	9% 10%	90%	VC C	406 394	6% 6%	82
	1.529		31	24	18	15.0	F	177	34%	99%	M	248	19%	93%	C	315	10%	91%	C	384	7%	85
	1.604		32	26	19	16.0	F	174	35%	99%	M	239	20%	94%	Č	304	11%	92%	Č	374	7%	86
	1.675	6.00	34	27	20	17	F	170	36%	99%	M	232	21%	94%	С	295	12%	92%	С	366	8%	87
	Flow L/min	Tip BAR	Application 75L/Ha	Speed (L/H 100L/Ha	a on 50cm : 125L/Ha	spacing) @ 150L/Ha	ER8 Class	0-04 VMD	(4027 <141	0-04) <600	SR8 Class	0-04 VMD	(4028 <141	38-04) <600		0-04 VMD		90-04) <600	DR8 Class		(4028 <141	
	1.02	1.25	16	12	9.8	8.2	M	256	15%	99%												
	1.12	1.50	18	13	11.0	8.9	M	246	17%	99%	C	385	4%	84%	1/0	404	=0/	000/			001	
80 -04	1.29 1.44	2.00	21 23	15 17	12 14	10.0 12.0	M	232 221	20%	99% 99%	C	352 327	7% 9%	87% 88%	VC C	424 397	5% 7%	80%	XC	547 519	2% 3%	61
Nozzles	1.58	3.00	25	19	15	13.0	F	212	25%	99%	C	306	11%	90%	C	376	8%	85%	XC	497	3%	70
14022100	1.71	3.50	27	20	16	14	F	205	26%	99%	Č	289	12%	91%	Č	359	9%	86%	XC	479	4%	72
	1.82	4.00	29	22	18	15	F	200	28%	99%	С	274	13%	91%	С	345	10%	87%	XC	463	4%	75
	1.93	4.50	31	23	19	15	F	195	29%	99%	M	260	14%	92%	C	333	11%	88%	VC	451	5%	76
	2.04	5.00	33	24	20	16	F	190	30%	99%	M	248	15%	93%	C	322	11%	89%	VC	439	5%	78
	2.14	5.50 6.00	34 36	26 27	21 21	17 18	F	187 183	31% 32%	99% 99%	M	238 228	16% 17%	93%	C	313 305	12%	90%	C C	429 421	5% 5%	80
	Flow	Tip			a on 50cm		ER8	0-05	(4027			0-05	(4028			0-05		90-05)	DR8		(4028	
	L/min	BAR	100L/Ha	125L/Ha	150L/Ha	175L/Ha	Class	VMD	<141	<600	Class		<141	<600		VMD	<141		Class	VMD	<141	
		1.25	15	12	10	8.7	C		10%	95%	V/O	400	40/	700/				-				_
80	1.40 1.61	1.50 2.00	17 19	13 15	11 13	9.6 11	C M	290 269	12% 16%	95% 95%	VC C	429 391	4% 7%	79% 82%	XC	508	3%	67%	XC	579	2%	55
-05	1.80	2.50	22	17	14	12	M	254	19%	95%	C	362	9%	85%	XC	478	4%	71%	XC	550	2%	60
Nozzles	1.97	3.00	24	19	16	14	M	243	21%	95%	Č	338	11%	86%	VC	455	5%	75%	XC	528	3%	64
	2.13	3.50	26	20	17	15	M	234	23%	95%	Č	318	12%	88%	VC	436	5%	77%	XC	510	3%	67
	2.28	4.00	27	22	18	16	M	226	24%	95%	С	300	13%	89%	VC	421	6%	79%	XC	495	3%	69
	2.42	4.50	29	23	19	17	M	219	26%	95%	C	285	14%	89%	C	407	6%	81%	XC	482	4%	71
	2.55 2.67	5.00	31 32	24 26	20 21	17 18	F	214 208	27% 28%	95% 95%	C M	271 259	15% 16%	90%	C	396 386	7% 7%	82% 83%	VC VC	471 461	4% 4%	73
	2.79	6.00	34	27	22	19	F	204	29%	95%	M	247	17%	91%	Č	376	7%	84%	VC	452	4%	75
	Flow	Tip			la on 50cm		ER8	0-06	(4027			0-06		38-06)		0-06		90-06)	DR8		(4028	
	L/min	BAR	125L/Ha	150L/Ha		200L/Ha	Class		<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<6
	1.53	1.25	15	12	10	9	C	328	11%	92%	V0	450	00/	700/								⊢
80	1.68 1.93	1.50 2.00	16 19	13 15	11 13	10 12	C	316 298	13% 16%	92% 91%	XC VC	456 423	3% 5%	76% 80%	XC	530	2%	63%	XC	600	1%	51
-06	2.16	2.50	21	17	15	13	C	285	19%	91%	VC	400	6%	83%	XC	504	3%	68%		575	2%	55
Nozzles	2.37	3.00	23	19	16	14	Č	275	21%	91%	C	381	7%	85%	XC	483	4%	71%	XC	555	2%	58
	2.56	3.50	25	20	18	15	М	266	22%	90%	С	367	8%	86%	VC	466	4%	74%	XC	538	2%	61
	2.74	4.00	26	22	19	16	M	259	24%	90%	C	354	9%	88%	VC	452	5%	76%	XC	524	3%	63
	2.90	4.50	28	23	20	17	M	253	25%	90%	C	344	9%	89%	VC	440	5%	77%		512	3%	65
	3.06	5.00	29 31	24 26	21 22	18 19	M	247	26% 27%	90% 90%	C C	334 326	10% 10%	90%	VC C	429 420	5% 6%	79% 80%	XC	502 492	3% 3%	68
	3.35	6.00	32	27	23	20	M	238	28%	89%	C	319	11%	91%	C	411	6%	81%	VC	484	4%	69
	Flow	Tip			a on 50cm			0-08	(4027			0-08		38-08)	MR8			90-08)	DR8		(4028	
	L/min	BAR	150L/Ha	200L/Ha	 	300L/Ha	Class		<141		Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<6
	2.04	1.25	16	12	10	8	XC		11%		LIA	F00	001	4007								_
QΩ	2.23		18 21	13	11	10	VC	356		87% 90%	UC	536 405	6% 7%	49%	IIC	545	60/	620/	IIC.	600	3%	5
80 -08	2.58	2.50	23	15 17	14	12	C M	321 296	17% 19%	92%	UC XC	495 463	7% 9%	58% 64%		513	6% 7%	63% 67%	UC	623 596	3% 4%	56
Nozzles	3.16	3.00	25	19	15	13	M	277	22%	93%	XC	437	10%	68%		488	8%	71%	UC	575	4%	59
	3.41	3.50	27	20	16	14	F	262	24%	94%	XC	414	10%	71%	XC	468	9%	73%	UC	557	5%	6
	3.65	4.00	29	22	18	15	F	250	25%	95%	XC	395	11%	73%	XC	452	10%	75%	UC	543	5%	64
		4.50	31	23	19	15	F	239	27%	95%	VC	378	12%	75%		438	11%			530	5%	66
		5.00	33 34	24 26	20 21	16 17	F	231 223	28%	96% 96%	VC C	363 350	12% 13%		VC VC	426 415	11% 12%			519 509	6% 6%	69
	4.47	6.00	36	27	21	18	F	216	30%		C	337	13%		C	405	12%			500	6%	70
	Flow	Tip	Application	Speed (L/H	a on 50cm	spacing) @	ER8	0-10	(4027	0-10)	SR8	0-10	(4028	88-10)	MR8	0-10	(4029	0-10)	DR8	0-10	(4028	30- ⁻
	L/min	BAR	200L/Ha	250L/Ha	300L/Ha	350L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<6
		1.25	15	12	10	9	XC	472	8%	77%	IIC.	EEC.	En/	AEn/	-		-	-		-		\vdash
80	2.79 3.22	2.00	17 19	13 15	11	10 11	XC	446	9% 12%	79% 81%	UC	556 516	5% 6%	45% 54%	UC	550	5%	62%	UC	615	4%	52
-10	3.60	2.50	22	17	14	12	C	382	13%	83%	UC	485	7%	60%		524	6%	66%		592	5%	56
Nozzles	3.95	3.00	24	19	16	14	Č	361	15%	85%	XC	460	8%	65%		504	6%	68%	UC	574	5%	58
	4.26	3.50	26	20	17	15	С	345	16%	86%	XC	439	9%	68%	UC	487	7%	70%	UC	560	6%	61
		4.00	27	22	18	16	M	331	17%	87%	XC	420	9%	70%		473	7%	72%	UC	547	6%	63
	4.84	4.50	29	23	19	17	M	319	18%	88% 88%	XC	404	10% 10%	72% 74%	XC	461 451	8% 8%	73% 75%	UC	536	7% 7%	65
		E 00																				
		5.00	31 32	24 26	20 21	17 18	F	309 300	19%	89%	VC	389 376	11%		XC	441	9%	76%		527 519	7%	67

COMBO-JET 80° Spray Tips - Standard Sprayer Systems

Section Sect	Nozzle	Flow	Tin	Appl	ication Rate	in Litres/He	ctare		VM	D (Dro	plet Siz	e in µ):	; %<14	11μ (Dr	ift %); ⁽	%<200)μ (Drif	t %); %	<600 _L	ı (Smal	II Drople	ets)	
Control Cont	Size &		Tip						ER80°	Series				Series			MR80°	Series	3		DR80°	Series	
1.00	Angle	L/min	ואט			peed in km	'n	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
3.49 1.50 177 14 12 10 XC 448 1079 1779 U5 548 594 4879 1879		Flow	Tip		Speed (L/H	la on 50cm	spacing) @	ER80				SR80		(4028		MR8				DR80			
4.03 2.00 19 16			-78181		000E/IId	0002/110	100E/Tid									Class	VMD	<141	<600	Class	VMD	<141	<600
126 448 1.20 2.22 18 15 14 VC 393 12% 82% UC 486 8% 59% 59% UC 566 6% 59% UC 566 5% 55% UC 546 7% 61% UC 547 557 558 55% UC 548 7% 64% 55% S5% UC 548 7% 64% S5% UC 548 7% S5% UC 548 54% S5% UC 548 54% S5% UC 548 54% S5% UC 548 UC 548 S5% UC 548 UC																							
Nearlies																			55%				
Nozeles 5.33 3.50 26																							
5.70 4.00 27 23 20 17 C 348 15% 86% KC 429 10% 67% U 522 8% 65% KD 549 684 56% 6.87 50% 6.88 57% KC 415 10% 69% U 520 8% 65% 68%																							
6.07 4.09 29 24 21 18 C 337 16% 87% XC 415 10% 69% UC 511 8% 67% UC 549 6% 61% 6.88 6.88 6.89 XC 403 11% 71% XC 502 8% 68% 67% UC 549 6% 61% 6.88 6.88 6.80 34 28 24 21 M 313 17% 88% XC 403 11% 72% XC 483 9% 70 69% UC 531 6% 63% 63% 6.88 6.00 34 28 24 21 M 313 17% 88% VG 381 11% 72% XC 483 9% 70 581 12% 73% XC 486 9% 70% UC 532 7% 66% 63% 342 24 24 XC 481 60% XC 481	Nozzles																						
6.83 f. 5.00 31 25 22 119 C 328 16% 88% CC 403 11% 17% XC 502 8% 68% 00 S31 6% 62% 6.88 6.89 6.90 34 28 24 21 M 313 17% 89% C 381 12% 73% XC 486 97 70% UC 523 7% 64% 97 70% UC 523 70% 64% 97 70% UC 523 7																							
6.88 5.50 32 27 23 20 M 320 17% 88% VC 391 11% 72% XC 493 9% 69% 0C 531 6% 63% Flow Tip Application Speed (L/Ha on 50cm spacing) 40 430 150 (4020-15) 40220-15) 40220-15) 40220-15 (40220																							
Flow Property Property Flow Property Proper						1																	
Flow Tip Application Speed (L/Hs on Sourh speed) ERBO-15 (40220-15) SRB0-15 (40220-15) Color																							
Lymn MAR 300 Lyffa 450 Lyffa 500 Lyffa Class VMD 414 640 Class VMD 414 660 Class VMD 641									313														
4.19 1.50 17 13 11 10 XC 452 8% 17% 10C 592 5% 40% 10C 517 7% 68% UC 611 3% 47% 10C 517 47% 518 518 10C 518		1						_	0-15														· · · /
4.84 2.00 19 15 13 12 XC 416 10% 79% UC 558 6% 47% UC 517 7% 66% 60% 40% 47%			-7818	0002110	TOOL/TIG	TOOLITIA		Oidoo				0.000				Class	VMD	<141	<600	Class	VMD	<141	<600
5.41 2.50 22 16																							
Nozzies 6.40 3.50 2.6 19 117 15 C 354 14% B2% 10 5.99 6% 55% 58% C 471 9% 71% UC 596 3% 54% Nozzies 6.84 4.00 27 21 18 16 C 340 15% 83% XC 475 7% 60% XC 441 10% 75% UC 580 4% 59% 7.65 5.00 31 23 20 18 M 319 17% 84% XC 460 7% 60% XC 441 10% 75% UC 554 4% 69% 9.85 9.85 12% 15% 73% 10 5.84 12% 12% 12% 12% 12% 12% 12% 12% 12% 12%	0.0																						
Nozzies 6.40 3.50 26 19 17 15 C 354 14% 82% UC 491 7% 83% XC 455 10% 73% UC 580 4% 57% 67% 725 4.50 29 22 19 17 M 329 16% 84% XC 475 7% 62% XC 429 11% 76% UC 564 4% 61% 62% A8 62% XC 431 13% 73% UC 541 5% 62% A8 62% XC 429 11% 76% UC 541 5% 62% 62% A8 62% XC 429 11% 76% UC 544 5% 62% A8 62% XC 431 11% 77% A8 UC 544 5% 62% A8 62% XC 431 11% 77% A8 UC 544 5% 62% A8 A8 A8 A8 A8 A8 A8 A																							
Fig.																							
T.25 4.50 29 22 19 17 M 329 16% 84% XC 460 7% 62% XC 429 11% 76% UC 554 4% 61% 62% Av Av Av Av Av Av Av A	Nozzles																						
Reserve																							
8.02 5.50 32 24 21 19																							
8.38 6.00 34 25 22 20 M 302 18% 18% 18% 12						 																	
Flow																							
March Marc																							
S.58 1.50 17																							
Record R																Class	VMD	<141	<600	Class	VMD	<141	<600
80																	=00	=0/	E00/		200	00/	
Nozzles Residence Reside																							
Nozzles 8.53 3.50 26 20																							
9.12 0.00 27 22 18 16 C 388 13% 80% XC 468 7% 61% XC 476 8% 70% UC 537 5% 65% 10.19 5.00 31 24 20 17 C 366 14% 82% XC 440 7% 65% XC 449 8% 73% UC 509 5% 67% 10.69 5.50 32 26 21 18 C 357 15% 83% XC 428 8% 66% XC 438 9% 74% UC 488 69% 11.17 6.00 34 27 22 19 M 349 15% 84% XC 428 8% 66% XC 428 9% 74% UC 488 69% 11.17 6.00 34 27 22 19 M 349 15% 84% XC 428 8% 66% XC 428 9% 74% UC 488 69% 11.17 6.00 34 27 22 19 M 349 15% 84% XC 428 8% 66% XC 428 9% 74% UC 488 69% 10.89 5.00 31 25 22 19 M 349 15% 84% XC 428 8% 66% XC 428 9% 74% UC 488 69% 10.89 5.00 34 27 22 19 M 349 15% 84% XC 428 8% 66% XC 428 9% 75% UC 488 69% 10.89 5.00 17 14 12 10 UC 504 8% 69% XC 449 9% XC 429 9% 75% UC 488 69% 10.89 5.00 19 16 14 12 XC 466 9% 72% UC 515 5% 53% UC 608 4% 54% UC 662 2% 45% 10.69 5.00 22 18 15 14 XC 436 9% 72% UC 515 5% 53% UC 608 4% 54% UC 662 2% 45% 10.69 5.00 22 18 15 14 XC 436 9% XC 470 490 6% 57% UC 579 4% 58% UC 630 3% 50% 10.66 3.50 26 21 18 16 VC 401 13% 77% XC 433 7% 62% UC 537 5% 63% UC 685 3% 57% 10.66 3.50 29 24 21 18 C 374 14% 79% XC 425 38% 66% UC 537 5% 63% UC 585 3% 57% 10.66 3.50 32 27 23 20 17 C 387 13% 78% XC 425 38% 66% UC 537 5% 63% UC 540 48% 69% 12.74 5.00 31 25 22 19 C 365 15% 81% XC 425 38% 66% UC 546 66% 66% UC 558 3% 57% 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10																							
9.67 4.50 29 23 19 17 C 376 13% 81% XC 453 7% 63% XC 441 8% 72% UC 509 5% 67% 10.69 5.50 32 26 21 18 C 357 15% 83% XC 442 8% 66% XC 443 8% 73% UC 509 5% 67% 11.17 6.00 34 27 22 19 M 349 15% 84% XC 417 8% 67% XC 428 8% 75% UC 488 69% 69% Flow Tip Application Speed (L/Ha on 50cm spacing)	Nozzies																						
10.19 5.00 31 24 20 17 C 366 14% 82% XC 440 7% 65% XC 449 8% 73% UC 509 5% 67% 11.17 6.00 34 27 22 19 M 349 15% 84% XC 428 8% 66% XC 438 9% 74% UC 498 5% 68% 68% 11.17 6.00 34 27 22 19 M 349 15% 84% XC 417 8% 67% XC 428 9% 75% UC 498 5% 68% 6																							
10.69 5.50 32 26 21 18 C 357 15% 83% XC 428 8% 66% XC 438 9% 74% UC 498 5% 68% 68% 11.17 6.00 34 27 22 19 M 349 15% 84% XC 417 8% 67% XC 428 8% 75% UC 488 6% 68% 68% 68% MS 48%																							
Third Flow Tip Application Speed (L/Ha on 50cm spacing)																							
Flow Tip Application Speed (L/Ha of 50cm spacing)																							
L/min BAR SOULHa																							
8.06																							
8.06 2.00 19 16 14 12 XC 466 9% 72% UC 515 5% 53% UC 608 4% 54% UC 662 2% 45% 80 9.01 2.50 22 18 15 14 XC 439 11% 74% UC 490 6% 57% UC 579 4% 58% UC 630 3% 50% 10.66 3.50 26 21 18 16 VC 401 13% 77% XC 453 7% 62% UC 537 5% 63% UC 605 3% 54% Nozzles 10.66 3.50 26 21 18 16 VC 401 13% 77% XC 453 7% 62% UC 537 5% 63% UC 605 3% 54% 11.40 4.00 27 23 20 17 C 387 13% 78% XC 438 7% 64% UC 521 5% 65% UC 585 3% 57% 12.99 4.50 29 24 21 18 C 374 14% 79% XC 425 8% 66% UC 537 5% 65% UC 553 4% 64% 12.74 5.00 31 25 22 19 C 364 15% 80% XC 413 8% 67% UC 486 6% 68% UC 528 4% 66% 13.36 5.50 32 27 23 20 C 355 15% 81% XC 402 8% 68% UC 486 6% 69% UC 528 4% 66% 13.36 5.50 32 27 23 20 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																Class	VIVID	< 141	<000	Class	VIVID	< 141	<000
80					-	 										IIC	608	/10/_	5/10/-	LIC	662	20/-	150/-
Nozzles 9.87 3.00 24 20 17 15 XC 418 12% 76% XC 470 7% 60% UC 556 5% 61% UC 605 3% 54%	80																						
Nozzles																							
11.40 4.00 27 23 20 17 C 387 13% 78% XC 438 7% 64% UC 521 5% 65% UC 567 4% 59% 12.09 4.50 29 24 21 18 C 374 14% 79% XC 425 8% 66% UC 508 6% 67% UC 553 4% 61%																							
12.09 4.50 29 24 21 18 C 374 14% 79% XC 425 8% 66% UC 508 6% 67% UC 553 4% 61% 61% 12.74 5.00 31 25 22 19 C 364 15% 80% XC 413 8% 67% UC 486 6% 68% UC 540 4% 63% 63% 13.36 5.50 32 27 23 20 C 355 15% 81% XC 402 8% 68% UC 486 6% 68% UC 540 4% 63% 63% 13.36 5.50 32 27 23 20 C 355 15% 81% XC 402 8% 68% UC 486 6% 69% UC 518 4% 66% 68% UC 540 4% 68% 68% UC 540 48% 68% 48%	INOZZICS																						
12.74 5.00 31 25 22 19 C 364 15% 80% XC 413 8% 67% UC 496 6% 68% UC 540 4% 63% 63% 13.36 5.50 32 27 23 20 C 355 15% 81% XC 402 8% 68% UC 486 6% 69% UC 528 4% 64% 64% 66%																							
13.36 5.50 32 27 23 20 C 355 15% 81% XC 402 8% 68% UC 486 6% 69% UC 528 4% 64% 13.96 6.00 34 28 24 21 M 347 16% 81% XC 393 8% 69% XC 477 66% 70% UC 518 4% 66% Flow Tip Application Speed (L/Ha on 50cm spacing)																							
13.96 6.00 34 28 24 21 M 347 16% 81% XC 393 8% 69% XC 477 6% 70% UC 518 4% 66% 66% Flow Tip Application Speed (L/Ha on 50cm spacing) @ ER80-30 (40270-30) SR80-30 (40288-30) MR80-30 (40290-30) DR80-30 (40280-30) MR80-30 MR80-30 (40280-30) MR80-																							
Flow Tip Application Speed (L/Ha on 50cm spacing) @ ER80-30 (40270-30) SR80-30 (40288-30) MR80-30 (40290-30) DR80-30 (40280-30) L/min BAR 600L/Ha 700L/Ha 800L/Ha 900L/Ha 13 11 UC 526 4% 65% UC 550 4% 48%																							
L/min BAR 600L/Ha 700L/Ha 800L/Ha 900L/Ha 11 UC 526 4% 65% UC 550 4% 48% UC 550 4% 48% UC 567 4% 54% UC 567 4% 54% UC 528 52% 52% 48% 52% 52% 48% 52% 52% 48% 54% UC 528 52% 52% 48% 52% 52% 52% 52% 48% 52%																							
8.38 1.50 17 14 13 11 UC 526 4% 65% UC 550 4% 48% UC 595 4% 54% UC 661 2% 46% 46% 67% 10 661 2% 46% 67% 67% 67% 67% 67% 67% 68% UC 513 5% 53% UC 595 4% 54% UC 661 2% 46% 66%																							
80																91000					viviD		.000
80																UC	595	4%	54%	UC	661	2%	46%
Nozzles 12.79 3.50 26 22 19 17 XC 416 8% 75% XC 447 6% 62% UC 528 5% 66% UC 530 3% 66% 13.68 4.00 27 23 21 18 XC 401 9% 76% XC 433 6% 64% UC 528 5% 66% UC 530 3% 65% 14.51 4.50 29 25 22 19 XC 388 10% 77% XC 410 7% 66% UC 50 550 3% 65% 15.29 5.00 31 26 23 20 VC 377 10% 78% XC 401 7% 66% UC 50 5% 68% UC 511 3% 65% 15.29 5.00 32 27 24 21 VC 367 11% 79% XC 401 7% 66% UC 440 6% 69% UC 440 480 6% 71% UC 449 49% 68%	80																						
Nozzles 12.79 3.50 26 22 19 17 XC 416 8% 75% XC 447 6% 62% UC 528 5% 64% UC 530 3% 60% 13.68 4.00 27 23 21 18 XC 401 9% 76% XC 433 6% 64% UC 514 5% 66% UC 530 3% 62% 14.51 4.50 29 25 22 19 XC 388 10% 77% XC 421 7% 66% UC 50 530 3% 65% 15.29 5.00 31 26 23 20 VC 377 10% 78% XC 401 7% 66% UC 490 6% 68% UC 511 3% 65% 16.04 5.50 32 27 24 21 VC 367 11% 79% XC 401 7% 69% UC 480 6% 71% UC 494 4% 68%																							
13.68 4.00 27 23 21 18 XC 401 9% 76% XC 433 6% 64% UC 514 5% 66% UC 530 3% 62% 14.51 4.50 29 25 22 19 XC 388 10% 77% XC 421 7% 66% UC 501 5% 68% UC 511 3% 65% 15.29 5.00 31 26 23 20 VC 377 10% 78% XC 401 7% 67% UC 490 6% 69% UC 490 6% 68% UC 490 6% 69% UC 490 6% 68% UC 490 6% 6% 77% UC 490 6% 68%																							
14.51 4.50 29 25 22 19 XC 388 10% 77% XC 421 7% 66% UC 501 5% 68% UC 511 3% 65% 15.29 5.00 31 26 23 20 VC 377 10% 78% XC 410 7% 66% UC 490 6% 69% UC 494 4% 67% 16.04 5.50 32 27 24 21 VC 367 11% 79% XC 401 7% 69% UC 480 6% 71% UC 479 4% 68%																							
15.29 5.00 31 26 23 20 VC 377 10% 78% XC 410 7% 67% UC 490 6% 69% UC 494 4% 67% 16.04 5.50 32 27 24 21 VC 367 11% 79% XC 401 7% 69% UC 480 6% 71% UC 479 4% 68%																							
16.04 5.50 32 27 24 21 VC 367 11% 79% XC 401 7% 69% UC 480 6% 71% UC 479 4% 68%																							
				34	29	25	22	C	358	11%	80%	XC	392	7%	70%	XC	471	6%	72%	XC	466	4%	70%

COMBO-JET 110° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE 5572.1 Standard)

Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data (by 5rd party), from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.) can vary between testing equipment and method, and is provided as an educational resource only.

Tips sized up to 110-6 verified on Plasse.

Tips sized up to 110-6 verified on Malave.

If the Carrier of the

VMD (Volume Median Diameter)
The median droplet (in μ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141μ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially. % <600μ (% of Small Droplets)
% of volume which is made up of
'small' droplets, useful for coverage.
As % of useful droplets lowers,
overall coverage is reduced.

Tipa aizeu up	10 110-06 Ve	rilled on Pha	se Doppier Particle Ar	iaiyzer (PDPA); tips st	zed over 110-06 ver	rilled on Malvem.	Onl'a C	oarse	(00)				-,	J										
Nozzle	Flow	T:-	Appl	ication Rate	in Litres/He	ectare			,	VMD (E)roplet	Size in	μ); %<	:141µ (Drift %	6); %<6	600μ (S	mall D	roplets	3)				
Size &	Rate	nsi		on 50cm No				ER110	° Serie				° Series			,.	° Serie				° Serie	S		
Angle	L/mir	1 P31	(6	Sprayer Sp	need in km	/h	Class				Class													
	Flow	Tip		Speed (L/H			ER11		(4028															
	L/mir	BAR	20L/Ha	30L/Ha	40L/Ha	50L/Ha	Class	VMD	<141	<600														
	0.25		15.0	10.0	7.6	6.1	F	151	43%	100%											_			
110	0.279		17.0	11.0	8.4	6.7	F	147	46%	100%											-			
110 -01	0.322	2 2.00	19.0 22.0	13.0 14.0	9.7 11.0	7.7 8.6	F	140 135	51% 54%	100%											<u> </u>			
Nozzles		3.00	24.0	16.0	12.0	9.5	F	131	57%	100%														
14022100		3.50	26.0	17.0	13.0	10.0	F	128	60%	100%														
		4.00	27.0	18.0	14.0	11.0	F	125	62%	100%														
		4.50	29.0	19.0	15.0	12.0	F	122	64%	100%														
		5.00	31.0	20.0	15.0	12.0	F	120	65%	100%														
		5.50	32.0	21.0	16.0	13.0	F	118		100%											-			-
	_	6.00	34.0	22.0 Speed (L/H	17.0	13.0	F ER110	116	68%	100%	SR110	0.15	(4028	7 015)	MD11	0.015	(4020-	1 015)	DD11	0.015	(4028)	6 015)		-
	Flow L/mir	Tip 1 BAR	35L/Ha	50L/Ha	60L/Ha	75L/Ha	Class	VMD	<141	<600							<141				<141			
		1.25	13.0	9.2	7.6	6.1	F	155		100%	51000	11110	111	1000	91000	11112		1000	01000	11112	,,,,	1000		
	0.419	1.50	14.0	10.0	8.4	6.7	F	151	42%	100%	F	233	19%	98%	С	379	6%	87%	VC	414	4%	88%		
110		2.00	17.0	12.0	9.7	7.7	F	145	46%	100%	F	217	23%	98%	M	327	11%	94%	C	371	7%	91%		
-015		2.50	19.0	13.0	11.0	8.6	F	141	50%	100%	F	205	27%	98%	M	291	14%	97%	С	340	9%	93%		
Nozzles	0.592		20.0	14.0	12.0	9.5	F	137	53%	100%	F	195	30%	98%	M	266	17%	98%	M	318	11%	94%		-
		3.50	23.0	15.0 16.0	13.0 14.0	10.0	F	134 132	55% 58%	100%	F	186 179	32%	98% 98%	F	245 229	20%	99% 99%	M	299 284	12% 13%	95% 96%		\vdash
		4.50	25.0	17.0	15.0	12.0	F	129	60%	100%	F	173	36%	98%	F	215	24%	99%	M	272	15%	96%		
		5.00	26.0	18.0	15.0	12.0	F	127	61%	100%	F	167	37%	98%	F	204	26%	99%	M	261	16%	97%		
		5.50	27.0	19.0	16.0	13.0	F	125	63%	100%	F	162	39%	98%	F	194	28%	100%	M	252	17%			
	0.838		29.0	20.0	17.0	13.0	F	124	64%	100%	F	157	40%	98%	F	186		100%	M	243		97%		
	Flow L/mir		Application 40L/Ha	Speed (L/H 50L/Ha	60L/Ha	spacing) @ 70L/Ha	ER11 Class	0-02 VMD	(4028 <141	31-02) <600	SR11 Class	0-02 VMD	(4028 <141		Class	10-02 VMD	(4029	(1-02) <600	DR11 Class		(4028	36-02) <600		-
		1.25	15.0	12.0	10.0	8.7	F	176	30%	99%	UldSS	VIVID	<141	<000	UIdSS	VIVID	<141	<000	UIdSS	VIVID	<141	<000		
		3 1.50	17.0	13.0	11.0	9.6	F	170	33%	100%	F	233	19%	99%	С	361	7%	93%	VC	475	3%	75%		
110		2.00	19	15.0	13.0	11.0	F	161	39%	100%	F	220	22%	99%	М	320	11%	95%	VC	436	4%	82%		
-02	0.721		22	17.0	14.0	12.0	F	154	43%	100%	F	210	25%	99%	M	291	14%	96%	VC	405	6%	86%		
Nozzles		3.00	24	19.0	16.0	14.0	F	148	46%	100%	F	202	27%	99%	M	269	17%	97%	C	380	7%	88%		-
		3.50	26 27	20.0 22.0	17.0 18.0	15.0 16.0	F	143 139	49% 52%	100%	F	195 189	29% 30%	99% 99%	M	252 238	19% 21%	98% 98%	C C	359 341	8% 9%	90%		
		4.50	29	23.0	19.0	17.0	F	135	54%	100%	F	184	32%	99%	F	227	22%	98%	M	325	10%	92%		-
		5.00	31	24.0	20.0	17.0	F	132	56%	100%	F	179	33%	99%	F	217	24%	98%	M	310	10%	93%		
		5.50	32	26.0	21.0	18.0	F	129	58%	100%	F	175	34%	99%	F	208	25%	99%	М	297	11%	94%		
		6.00	34	27.0	22.0	19.0	F	126	59%	100%	F	171	35%	99%	F	201	26%	99%	M	286	12%	94%		
	Flow	Tip		Speed (L/H			ER110						(40287			0-025					(4028)		UR11	
	L/mir 0.637		50L/Ha 15	60L/Ha 13.0	70L/Ha 11.0	80L/Ha 9.6	Class	VMD 196		<600 100%	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VIVID	<141	<600	Class (4029)	
	0.698		17	14.0	12.0	10.0	F	192	29%	100%	М	251	16%	98%									(1023	_ 0_0
110	0.806		19	16.0	14.0	12.0	F	187	29%	100%	M	237	19%	98%	С	354	8%	90%	VC	438	5%	79%	UC	595
-025	0.90		22	18.0	15.0	14.0	F	182	30%	100%	F	227	22%	98%	M	330	10%	92%	VC	410	6%	84%	UC	557
Nozzles			24	20.0	17.0	15.0	F	179	30%	100%	F	218	24%	98%	M	311	12%	94%	C	387	7%	87%	UC	527
	1.066		26	21	18.0	16.0	F	176	30%	100%	F	211	25%	98%	M	295	14%	95%	C C	368	8%	90%	UC	502
		4.00 4.50	27 29	23 24	20.0 21.0	17.0 18.0	F	174 171	31%	100%	F	204 199	27% 28%	98% 98%	M	281 268	15% 16%	96% 96%	M	351 337	9%	91% 92%	UC XC	480 460
		5.00	31	25	22.0	19.0	F	169	31%	100%	F	194	29%	98%	M	257	17%	97%	M	323	10%		XC	443
		5.50	32	27	23.0	20.0	F	167	31%	100%	F	189	30%	98%	M	247	18%	97%	M	311	11%		XC	427
	1.396	6.00	34	28	24	21.0	F	166	31%		F	185	31%	98%	M	238	19%	97%	M	301	11%		VC	412
	Flow	Tip		Speed (L/H			ER11			31-03)	SR11		(4028			10-03	(4029		DR11		(4028		UR11	
	L/mir	BAR 1.25	60L/Ha 15	75L/Ha 12.0	100L/Ha 9.2	120L/Ha 7.6	Class		<141 25%	<600	Class	VIVID	<141	<600	Class	VIVID	<141	<600	Class	VIVID	<141	<600	Class (4029	
		1.50	17	13.0	10.0	8.4	F		28%		M	331	8%	93%									(4028	2-03)
110		2.00	19	15	12.0	9.7	F		31%		M	306	11%	95%	С	399	6%	86%	VC	484	3%	73%	UC	644
-03	1.081	2.50	22	17	13.0	11.0	F	177	34%	100%	M	287	14%	96%	С	371	8%	89%	VC	455	4%	78%	UC	606
Nozzles	1.184	3.00	24	19	14.0	12.0	F	170	36%	100%	M	272	16%	96%	С	350	9%	91%	VC	432	5%	82%	UC	575
		3.50	26	20	15.0	13.0	F	165	37%	100%	M	258	17%	97%	M	331	10%	93%	VC	412	6%	84%	UC	549
		4.00	27 29	22	16 17	14.0	F	160 156	39% 40%	100%	M	247 237	19% 20%	97% 97%	M	315 301	11% 12%	94% 95%	C C	395 380	6% 7%	86%	UC	527
		4.50	31	23 24	18	15.0 15.0	F	152	42%	100%	F	228	21%	98%	M	288	13%	96%	C	367	7%	89%	UC	507 489
		1 5.50	32	26	19	16.0	F	149		100%	F	220	22%	98%	M	276	14%		Č	355	8%	90%	XC	473
		6.00	34	27	20	17	F	146		100%	F	212		98%	М	266	14%		Č	344		91%	XC	458

COMBO-JET 110° Spray Tips - Standard Sprayer Systems

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE S572.1 Standard)

Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data (by 3rd party), from parsy spectrum recording equipment (without wind tunned use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.), can vary hetween testing equipment and method, and is provided as an educational resource only.

Extremely Coarse (XC)

Ultra Coarse (UC)

VMD (Volume Median Diameter) The median droplet (in µ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141μ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially.

% <600µ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage As % of useful droplets lowers, overall coverage is reduced.

				nalyzer (PDPA); tips si				Coarse		ال	half ma	ade up of	droplets	larger.	d	ırift will iı	ncrease :	substant	tially.	01	verall co	verage is	s reduced.
Nozzle	Flow	Tip		cation Rate								Size in			Drift %); %<€	300µ (S	mall D					
Size &	Rate	psi		on 50cm No: Spraver St				ER110°				SR110°					° Series			DR110°			-
Angle	L/min Flow	Tip		Sprayer Sp Speed (L/H			Class FR1	10-04		31-04)		VMD 10-04	(4028				(4029			10-04		36-04)	UR110-
	L/min	BAR	75L/Ha		125L/Ha	150L/Ha	Class	VMD		<600		VMD					<141						
	1.019		16	12	9.8	8.2	M	244		100%													(40292-0
110	1.117		18	13	11.0	8.9	M	237		100%		342	8%	92%	VO	401	F0/	0.40/	VO	F1.4	00/	C00/	110 0
110 -04	1.289 1.442		21 23	15 17	12 14	10.0 12.0	M	227 218		100%	M	317 297	11% 13%	94% 95%	VC C	421 390	5% 6%	84% 88%	VC	514 483	3% 4%	68% 73%	UC 6
Nozzles	1.579		25	19	15	13.0	F	211		100%	M	281	14%	95%	C	365	7%	90%	VC	458	4%	77%	UC 5
	1.706		27	20	16	14	F	206		100%		267	16%	96%	Č	344	8%	92%	VC	436	5%	80%	UC 5
	1.824		29	22	18	15	F	201		100%		256	17%	96%	M	326	9%	94%	VC	417	6%	82%	UC 5
	1.934		31	23	19	15	F	196		100%		245	18%	97%	M	310	10%		C	400	6%	84%	UC 5
	2.039 2.138		33 34	24 26	20 21	16 17	F	192 189		100%	M	236 228	19% 20%	97% 97%	M	296 282	11%	95% 96%	C	386 372	6% 7%	85% 87%	UC 5
	2.233		36	27	21	18	F	186		100%	F	220		97%	M	271	12%		C	360	7%	87%	UC 4
	Flow	Tip		Speed (L/H		spacing) @	ER11	0-05		31-05)		10-05	(4028	7-05)	MR11		(4029	1-05)		0-05	(4028	6-05)	UR110-0
	L/min	BAR	100L/Ha	125L/Ha	150L/Ha	175L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class VI
		1.25	15	12	10	8.7	M	253	17%	95%		202	E0/	000/	$\vdash \vdash$	<u> </u>			-	-	-	\vdash	(40292-0
110	1.40	1.50 2.00	17 19	13 15	11	9.6 11	M	244	19% 22%	95%	C	392 359	5% 8%	88% 91%	VC	491	3%	71%	XC	533	2%	62%	UC 6
-05	1.80	2.50	22	17	14	12	M	219	25%	95%	M	333	10%	93%	VC	459	4%	76%	XC	512	3%	66%	UC 6
Nozzles	1.97	3.00	24	19	16	14	F	210	27%	95%	M	312		94%	VC	432	5%	80%	VC	495	3%	69%	UC 6
	2.13	3.50	26	20	17	15	F	202	28%	95%	M	294	13%	95%	VC	410	6%	82%	VC	481	3%	72%	UC 5
			27	22	18	16	F	196	30%	95%	M	279	14%	96%	C	391	6%	84%	VC	469	3%	74%	UC 5
	2.42	4.50 5.00	29 31	23 24	19 20	17 17	F	190 185	31%	95% 95%	M	265 253	16% 17%	96% 97%	C	374 359	7% 7%	86% 87%	VC VC	457 448	4%	75% 77%	UC 5
	2.55	5.50	32	26	21	18	F	180	33%	95%	M	242	17%	97%	C	345	8%	88%	VC	439	4%	78%	UC 5
	2.79	6.00	34	27	22	19	F	176	34%		F	232		97%	M	332	8%	89%	VC	431	4%	79%	UC 5
	Flow	Tip	Application	Speed (L/H	a on 50cm	spacing) @		10-06	(4028	31-06)		10-06	(4028	7-06)	MR11	10-06	(4029	1-06)	DR11	10-06	(4028	86-06)	UR110-0
	L/min	BAR	125L/Ha	150L/Ha	175L/Ha	200L/Ha	Class	VMD		<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	
	1.53	1.25	15	12	10	9	C	287	13%	94%	VC	466	20/	760/									(40292-0
110	1.68	1.50 2.00	16 19	13 15	11	10 12	C M	278 263	15% 17%	94%	VC VC	466 421	3% 6%	76% 83%	XC	511	3%	67%	XC	569	2%	56%	UC 6
-06	2.16		21	17	15	13	M	251	19%	94%	C	386	8%	87%	VC	485	4%	72%	XC	541	2%	62%	UC 6
Nozzles			23	19	16	14	M	242	21%	95%	Č	358	9%	90%	VC	464	4%	76%	XC	518	3%	65%	UC 6
	2.56		25	20	18	15	M	234	22%	95%	M	334	10%	92%	VC	447	4%	78%	VC	499	3%	68%	UC 6
		4.00	26	22	19	16	M	227	24%	95%	M	314		93%	VC	431	5%	80%	VC	482	3%	71%	UC 5
	2.90		28	23	20	17	F	221	25%	95%	M	295		94%	VC	418	5%	82%	VC	468	3%	72%	UC 5
	3.06	5.00 5.50	29 31	24 26	21 22	18 19	F	216 211	26% 27%	95% 95%	M	279 264	14%	95% 95%	VC C	405 394	5% 6%	84% 85%	VC VC	454 442	4%	74% 75%	UC 5
	3.35	6.00	32	27	23	20	F	206	27%	95%	M	251	15%	96%	C	384	6%	86%	VC	432	4%	77%	UC 5
	Flow	Tip		Speed (L/H				10-08		31-08)		10-08		7-08)	MR11			1-08)	DR11			36-08)	UR110-
	L/min	BÀR	150L/Ha	200L/Ha	250L/Ha	300L/Ha	Class	VMD		<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	
	2.04	1.25	16	12	10	8	C	336	13%	90%					\sqcup								(40292-0
110	2.23	1.50	18 21	13 15	11 12	9	C	319 293	15% 17%	91%	VC VC	502	4%	56%	XC	F27	4%	E20/	XC	620	20/	40%	UC 7
110 -08		2.00	23	17	14	12	M	273	19%	93%	VC	458 423	6% 7%	66% 72%	VC	537 499	5%	52% 58%	XC	585	3%	45%	UC 6
Nozzles	3.16	3.00	25	19	15	13	M	257	21%	95%	C	396	8%	76%	VC	470	5%	63%	XC	556	4%	49%	UC 6
	3.41	3.50	27	20	16	14	M	243	22%	95%	Č	372	9%	79%	VC	444	6%	67%	XC	532	4%	52%	UC 6
			29	22	18	15	M	231	23%	96%	С	351		81%	VC	422	6%	70%	XC	511	4%	54%	UC 5
	3.87		31	23	19	15	F	220	24%	96%	M	333	10%	83%	C	402	7%	72%	VC	493	5%	56%	UC 5
	4.08		33 34	24 26	20	16 17	F	211	25% 26%	97%	M	317	11% 11%	85% 86%	C	385 369	7% 8%	74% 76%	VC VC	476 461	5% 5%	58% 60%	UC 5
	4.47		36	27	21	18	F	194	27%	97%	M	289	12%	87%	C	355	8%	77%	VC	448	5%	61%	UC 5
	Flow	Tip	Application	Speed (L/H		spacing) @	ER11	0-10	(4028	1-10)	SR11	0-10	(4028)	7-10)	MR11	0-10	(4029	1-10)		0-10	(4028	6-10)	UR110-
	L/min	BAR	200L/Ha	250L/Ha	300L/Ha	350L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class VI
	2.55		15	12	10	9	VC	371	9%	87%	V0	500	F0/	F10/									(40292-
110	3.22		17	13	11	10	C	354		89%		522	5%		VC	520	10/	520/	VC	610	50/	500/	LIC 7
110 -10	3.60		19 22	15 17	13 14	11 12	C	328 307		90%	VC VC	476 439	6% 7%	61% 68%		529 493	4% 5%	52% 57%	XC	593	5% 5%	59% 56%	UC 7 UC 6
Nozzles	3.95		24	19	16	14	C	290	17%			410	8%	72%		464	5%	61%	XC	577	5%	53%	
	4.26		26	20	17	15	M	276	19%			385	9%	76%		439	6%	64%	XC	564	6%	51%	
	4.56	4.00	27	22	18	16	M	264	20%	93%	С	363	9%	78%	VC	418	6%	67%	XC	553	6%	49%	UC 5
	4.84		29	23	19	17	M	253	21%	94%	С	344	10%	80%		400	6%	69%	XC	543	6%	47%	UC 5
	5.10		31	24	20	17	M F	243	22%	94%	M	327	10%	82%		383	7%	71%	XC	534	6%	45%	UC 5
	5.35 5.58		32 34	26 27	21	18 19	F	234 226	23%	94%	M	312 298		83% 84%		368 354	7%	72% 73%	XC	526 518	6% 6%	43% 42%	
	Flow	Tip		Speed (L/H			_	0-125		1-125)		0-125	(40287		MR110			1-125)	DR110			6-125)	00 0
	L/min	BAR	250L/Ha	300L/Ha	350L/Ha	400L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600		VMD	<141	<600	Class	VMD	<141	<600	
	3.49		17	14	12	10	XC	430	8%	68%													
	4.03		19	16	14	12	XC	413	9%	71%	XC	524		51%	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	055	15:	0077	1/2	05:	100	0.45	
110	4.51		22	18	15	14	XC	387	10%	76%	VC	476		61%	XC	623	4%	38%	XC	651	3%	34%	
	4.94		24 26	20 21	17 18	15 16	VC C	366 349	11% 12%	79% 81%	VC VC	439 409		67% 71%	XC	587 558	4% 5%	44% 49%	XC	626	4%	37% 40%	
-125			۷۷				C	335	12%	83%		383		75%	XC	533	5%	52%	XC	590	4%	42%	
	5.33		27 l	23	20	1 17			1 1 4 / 0	1 00 /0	0	4 000	1 / / 0 /	110/01	, AU !	1 000	1 0 /0	104/0	1 // 0				
-125	5.70	4.00	27 29	23 24	20 21	17 18					C	361					5%	55%	XC				\vdash
-125		4.00 4.50	27 29 31	24 25	21 22	17 18 19	C C	323 312	13% 13%	84%	C	361 341	7% 8%	77% 79%	XC VC	511 492	5% 5%	55% 57%	XC	575 562	5% 5%	44% 45%	
-125	5.70 6.04	4.00 4.50 5.00 5.50	29	24	21	18	С	323	13% 13% 14%	84%	C M		7% 8% 8%	77%	VC VC	511	5% 6%		XC	575	5%	44% 45% 47%	

COMBO-JET 110° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

Nozzle	Flow	Tip			in Litres/He			ED110										Small D			0.0-4	
Size &	Rate L/min	psi			zzle Spacino			ER110 ^o		s <600		SR110				MR110				DR110°		
Angle		Tin			peed in km/ a on 50cm :			10-15		1<000 31-15)		10-15		<600 7-15)		VMD 0-15		<600 91-15)		0-15		1 <600 36-15)
	Flow L/min	Tip BAR	300L/Ha	400L/Ha	450L/Ha	500L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
	4.19		17	13	450L/Ha	10	XC	429	9%	66%	Ulass	VIVID	<141	<000	UIdSS	VIVID	<141	<000	UldSS	VIVID	<141	<000
	4.13	2.00	19	15	13	12	XC	401	10%	71%	XC	543	5%	50%	XC	612	4%	40%				\vdash
110	5.41	2.50	22	16	14	13	XC	379	11%	74%	XC	510	5%	56%	XC	586	4%	44%	XC	636	4%	44%
-15	5.92	3.00	24	18	16	14	VC	361	12%	77%	VC	483	6%	60%	XC	564	5%	47%	XC	614	4%	47%
Nozzles	6.40	3.50	26	19	17	15	C	346	13%	79%	VC	460	6%	64%	XC	546	5%	49%	XC	595	4%	50%
	6.84		27	21	18	16	Č	333	14%	80%	VC	441	7%	67%	XC	530	5%	51%	XC	579	4%	52%
	7.25	4.50	29	22	19	17	Č	322	14%	82%	VC	423	7%	69%	XC	517	5%	53%	XC	565	4%	54%
	7.65	5.00	31	23	20	18	С	311	15%	83%	VC	407	7%	71%	XC	504	5%	54%	XC	552	4%	56%
	8.02	5.50	32	24	21	19	С	302	15%	84%	С	393	8%	72%	VC	493	5%	56%	XC	540	5%	57%
	8.38	6.00	34	25	22	20	С	294	16%	84%	С	380	8%	74%	VC	483	5%	57%	XC	530	5%	59%
	Flow	Tip			a on 50cm s			0-20		31-20)	SR11			37-20)	MR11		(4029	91-20)				
	L/min	BAR	400L/Ha	500L/Ha	600L/Ha	700L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600				
	5.58		17	13	11	10	UC	488	7%	58%												
	6.45	2.00	19	15	13	11	XC	457	8%	63%	XC	522	6%	54%	XC	598	4%	42%				
110	7.21	2.50	22	17	14	12	XC	433	8%	67%	VC	492	6%	60%	XC	569	5%	46%				
-20	7.90	3.00	24	19	16	14	XC	413	9%	70%	VC	467	7%	64%	XC	547	5%	49%				
Nozzles	8.53	3.50	26	20	17	15	XC	397	9%	72%	VC	446	7%	67%	XC	527	6%	52%				-
	9.12		27	22	18	16	XC	383	10%	74%	VC	428	8%	70%	XC	511	6%	54%				
	9.67	4.50	29	23	19	17	VC	370	10%	75%	VC	412	8%	72%	VC	496	6%	56%				<u> </u>
	10.19		31	24	20	17	VC	359	10%	76%	C	398	8%	74%	VC	483	6%	57%		-		-
	10.69		32 34	26 27	21 22	18 19	C	348 339	11%	78% 79%	C	385 373	8% 9%	75% 77%	VC VC	471 460	7% 7%	59% 60%				├
		6.00			a on 50cm s		ER11			31-25)		10-25		37-25)	VC	400	1 %	00%		_		\vdash
	Flow L/min	Tip BAR	500L/Ha	600L/Ha	700L/Ha	800L/Ha	Class	VMD	<141	<600		VMD	<141									\vdash
	6.98		17	14	12	10	UC	486	6%	57%	Ulass	VIVID	(141	\000				_				\vdash
		2.00	19	16	14	12	XC	456	7%	64%	XC	507	6%	55%				1				\vdash
110	9.01	2.50	22	18	15	14	XC	433	7%	69%	VC	480	6%	60%								
-25	9.87	3.00	24	20	17	15	XC	414	8%	72%	VC	458	7%	64%								\vdash
Nozzles	10.66		26	21	18	16	XC	397	8%	75%	VC	439	7%	66%								
	11.40		27	23	20	17	XC	383	8%	77%	VC	423	8%	68%								
	12.09		29	24	21	18	VC	371	8%	78%	VC	408	8%	70%								
	12.74	5.00	31	25	22	19	VC	360	8%	80%	С	396	8%	72%								
	13.36		32	27	23	20	С	350	8%	81%	С	384	8%	73%								
	13.96		34	28	24	21	C	341	9%	82%	С	373	9%	74%								
	Flow	Tip			a on 50cm s		ER11			31-30)												
	L/min		600L/Ha	700L/Ha	800L/Ha	900L/Ha	Class		<141	<600												
	8.38	1.50	17	14	13	11	UC	498	5%	56%		-										├
110		2.00	19	17	15	13	XC	469	6%	61%	_	-	-	-	-			-		-		₩
110	10.81		22	19	16	14	XC	447	7%	64%	<u> </u>	-	-	-			_	-	_	<u> </u>		\vdash
-30	11.84 12.79		24 26	20 22	18 19	16 17	XC	429	7%	66% 68%		-	-	-	-			-		-	-	₩
Nozzles	13.68		27	23	21	18	XC	400	8% 8%	70%	\vdash	-	-	_		<u> </u>	-	_	<u> </u>	\vdash	-	\vdash
		4.50	29	25	22	19	XC	388	9%	71%		-	1	+			-	_		\vdash		\vdash
	15.29		31	26	23	20	XC	377	9%	72%		-	1	+			-	_				\vdash
		5.50	32	27	24	21	VC	368	9%	73%		 	 	 		 		 	 	\vdash	 	\vdash
	16.75		34	29	25	22	VC	359	10%	74%		\vdash						_				\vdash
	10.75	10.00	J 34	25	Z0		VU	308	1070	1470		1		1				1				

COMBO-JET 80° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE S572.1 Standard)

AGADE Oping Viscosimilation in January Spray using its categorized based on DVO,1 and VMO droplet sizes.

Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunne use), has been used to classify spray quality for this chart. Extra data (e.g. VMO, etc.), can vary between testing equipment and method, and is provided as an educational resource only, ps sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malv

Fine (F) Medium (M) Medium (M)
Coarse (C)
Very Coarse (VC)
Extremely Coarse (XC)
Ultra Coarse (UC)

VMD (Volume Median Diameter) The median droplet (in μ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141µ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially.

% <600µ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage. As % of useful droplets lowers, overall coverage is reduced.

Nozzle Size & Angle Flow Rate L/min BAR Angle L/min BAR L/min B	DR80° Series \$ VMD < 141 < 66 30-005 (40280-00 \$ VMD < 141 < 66 282 10% 100 218 22% 100 181 30% 100 181 30% 100 168 33% 100 157 36% 100 148 38% 100 140 41% 100 0-0067 (40280-00 \$ VMD < 141 < 66 313 8% 100
Size & Angle Park	DR80° Series \$ VMD < 141 < 66 30-005 (40280-00 \$ VMD < 141 < 66 282 10% 100 218 22% 100 181 30% 100 181 30% 100 168 33% 100 157 36% 100 148 38% 100 140 41% 100 0-0067 (40280-00 \$ VMD < 141 < 66 313 8% 100
Angle L/min BAR BAR BAR BAR BAR BAR	S VMD <141 <66 30-005 (40280-00 8 VMD <141 <66 282 10% 100 245 17% 100 218 22% 100 198 26% 100 181 30% 100 168 33% 100 157 36% 100 148 38% 100 140 41% 100 0-0067 (40280-00 8 VMD <141 <66
Flow Boom Tip L/min BAR BAR Application Speed (L/Ha on 50cm spacing) @ ER80-005 (40270-005) SR80-005 (40280-005) MR80-005 (40290-005) D MR80-005 (40280-005) MR8	282 10% 100 245 17% 100 218 22% 100 198 26% 100 181 30% 100 168 33% 100 157 36% 100 148 38% 100 140 41% 100 140 4
L/min BAR BAR BAR 20L/Ha 30L/Ha 40L/Ha 50L/Ha 50L/Ha Class VMD <141 <600 Class VMD <14	282 10% 100 245 17% 100 218 22% 100 198 26% 100 181 30% 100 168 33% 100 157 36% 100 148 38% 100 0-0067 (40280-006 5 VMD <141 <66
0.127 1.25 1.25 1.29 1.9-7.6 1.3-5.1 1-3.8 0.8-3.1 F 172 30% 100%	282 10% 100 245 17% 100 218 22% 100 198 26% 100 181 30% 100 168 33% 100 157 36% 100 148 38% 100 0-0067 (40280-006 5 VMD <141 <66
80	245 17% 100 218 22% 100 198 26% 100 181 30% 100 168 33% 100 157 36% 100 148 38% 100 140 41% 100 0-0067 (40280-006 s VMD <141 <66 313 8% 100
80	245 17% 100 218 22% 100 198 26% 100 181 30% 100 168 33% 100 157 36% 100 148 38% 100 140 41% 100 0-0067 (40280-006 s VMD <141 <66 313 8% 100
Nozzles 0.180 2.50 2.50 2.8-11 1.8-7.2 1.4-5.4 1.1-4.3 F 141 52% 100% F 212 23% 100% F	245 17% 100 218 22% 100 198 26% 100 181 30% 100 168 33% 100 157 36% 100 148 38% 100 140 41% 100 0-0067 (40280-006 s VMD <141 <66 313 8% 100
Nozzles 0.197 3.00 3.00 3.12 2.7.9 1.5-5.9 1.2-4.7 F 133 58% 100% F 192 28% 100% 0.213 3.50 3.50 3.3-13 2.1-8.5 1.6-6.4 1.3-5.1 F 127 63% 100% F 177 33% 100% 0.228 4.00 4.00 3.5-14 2.3-9.1 1.7-6.8 1.4-5.5 F 122 67% 100% F 164 38% 100% 0.242 4.50 4.50 3.8-15 2.4-9.7 1.8-7.3 1.5-5.8 F 118 71% 100% F 154 41% 100% 0.255 5.00 5.00 3.8-15 2.5-10 1.9-7.6 1.5-6.1 F 115 74% 100% F 145 45% 100% 0.267 5.50 5.50 4-16 2.8-11 2.8 1.6-6.4 F 112 77% 100% F 133 48% 100% 0.279 6.00 6.00 4.3-17 2.8-11 2.1-8.4 1.7-6.7 F 109 80% 100% F 131 51% 100% F 131 51% 100% F 131 51% 100% 1.7-12 1.5-12 1.5-12 1.5-12 1.7-6.8 1.3-5.1 1.4-1.1 F 207 18% 100% 100% F 214 23% 100% 1.87 1.5-12 1.5-12 1.9-7.5 1.4-5.6 1.1-4.5 F 193 24% 100% F 131 30% 100% 1.87 1.5-12 1.9-7.5 1.4-5.6 1.1-4.5 F 193 24% 100% F 191 30% 100% 1.87 1.5-12 1.5-12 1.5-5.8 F 159 41% 100% F 174 23% 100% 1.	218 22% 100 198 26% 100 181 30% 100 168 33% 100 157 36% 100 148 38% 100 0-0067 (40280-006 5 VMD <141 <66
0.213 3.50 3.51 3.3-13 2.1-8.5 1.6-6.4 1.3-5.1 F 127 63% 100% F 177 33% 100%	198 26% 100 181 30% 100 181 30% 100 157 36% 100 148 38% 100 140 41% 100 0-0067 (40280-006
0.242	168 33% 100 157 36% 100 148 38% 100 140 41% 100 0-0067 (40280-006 8 VMD <141 <60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	157 36% 100 148 38% 100 140 41% 100 0-0067 (40280-006 \$ VMD <141 <60
0.267 5.50 5.50 4-16 2.8-11 2-8 1.6-6.4 F 112 77% 100% F 138 48% 100%	148 38% 100 140 41% 100 0-0067 (40280-006 s VMD <141 <60
0.279 6.00 6.00 4.3-17 2.8-11 2.1-8.4 1.7-6.7 F 109 80% 100% F 131 51% 100%	140 41% 100 0-0067 (40280-006 s VMD <141 <60 313 8% 100
Flow Boom Tip Application Speed (L/Ha on 50cm spacing) @ ER80-0067 (40270-0067) SR80-0067 (40288-0067) MR80-0067 (40290-0067) DI MR80-0067 MR80-0067 MR80-0067 DI DI MR80-0067	0-0067 (40280-006 s VMD <141 <60
L/min BAR BAR 20L/Ha 30L/Ha 40L/Ha 50L/Ha Class VMD <141 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600 <600	S VMD <141 <60 313 8% 100
80 0.171 1.25 1.25 2.5-10 1.7-6.8 1.3-5.1 1-4.1 F 207 18% 100% Body Body 1.50 2.5-10 1.7-6.8 1.3-5.1 1-4.1 F 207 18% 100% Body 1.3-5.2	313 8% 100
80 -0067 0.187 0.216 1.50 2.00 1.50 2.00 2.8-11 3.3-13 1.9-7.5 2.8-6 1.4-5.6 1.6-6.5 1.1-4.5 1.3-5.2 F F F F 193 3.4% 100% F F F 214 2.3% 100% Nozzles 0.265 0.286 0	
80	
-0067 Nozzles 0.241 2.50 2.50 3.5-14 2.4-9.7 1.8-7.2 1.5-5.8 F 159 41% 100% F 191 30% 100% Nozzles 0.265 3.00 3.00 4-16 2.8-11 2-7.9 1.6-6.3 F 148 47% 100% F 174 36% 100% F 0.286 3.50 3.50 4.3-17 2.8-11 2.2-8.6 1.7-6.9 F 140 53% 100% F 161 41% 100% 0.305 4.00 4.00 4.5-18 3-12 2.3-9.2 1.8-7.3 F 133 57% 100% F 150 45% 100%	
Nozzles 0.265 3.00 3.00 4-16 2.8-11 2-7.9 1.6-6.3 F 148 47% 100% F 174 36% 100% 0.286 3.50 3.50 4.3-17 2.8-11 2.2-8.6 1.7-6.9 F 140 53% 100% F 161 41% 100% 0.305 4.00 4.00 4.5-18 3-12 2.3-9.2 1.8-7.3 F 133 57% 100% F 150 45% 100%	280 12% 100
0.286 3.50 4.3-17 2.8-11 2.2-8.6 1.7-6.9 F 140 53% 100% F 161 41% 100% 0.305 4.00 4.00 4.5-18 3-12 2.3-9.2 1.8-7.3 F 133 57% 100% F 150 45% 100%	256 15% 100
0.305 4.00 4.00 4.5-18 3-12 2.3-9.2 1.8-7.3 F 133 57% 100% F 150 45% 100%	237 17% 100
0 224 450 450 49 10 2 2 12 2 4 0 7 2 7 9 6 127 610/ 1000/	222 19% 100
	209 21% 100
0.341 5.00 5.00 5-20 3.5-14 2.5-10 2.1-8.2 F 122 64% 100% F 134 52% 100%	199 23% 100
0.358 5.50 5.50 5.3-21 3.5-14 2.8-11 2.2-8.6 F 118 68% 100% F 127 55% 100%	190 24% 100
0.374 6.00 6.00 5.5-22 3.8-15 2.8-11 2.3-9 F 114 71% 100% F 122 58% 100%	182 26% 100
	80-01 (40280-0)
L/min BAR BAR 20L/Ha 30L/Ha 40L/Ha 50L/Ha Class VMD <141 <600 Clas	s VMD <141 <60
0.279 1.50 1.49 4.3-17 2.8-11 2.1-8.4 1.7-6.7 F 171 31% 100%	+ + + + + + + + + + + + + + + + + + + +
80 0.322 2.00 1.99 4.8-19 3.3-13 2.4-9.7 1.9-7.7 F 158 40% 100% M 238 29% 97% M 222 22% 97%	317 9% 949
-01 0.360 2.50 2.49 5.5-22 3.5-14 2.8-11 2.2-8.6 F 148 46% 100% F 210 29% 97% F 201 27% 97%	287 12% 959
Nozzles 0.394 3.00 2.99 6-24 4-16 3-12 2.4-9.5 F 140 52% 100% F 190 29% 97% F 184 32% 97% F	265 15% 979
0.426 3.50 3.49 6.5-26 4.3-17 3.3-13 2.5-10 F 134 56% 100% F 174 29% 98% F 172 36% 97% I	247 17% 989
0.455 4.00 3.98 6.8-27 4.5-18 3.5-14 2.8-11 F 129 60% 100% F 162 29% 98% F 162 39% 97% I	233 19% 999
0.483 4.50 4.48 7.3-29 4.8-19 3.5-14 3-12 F 125 64% 100% F 152 29% 98% F 153 42% 97% I	221 20% 100
0.509 5.00 4.98 7.8-31 5-20 3.8-15 3-12 F 121 67% 100% F 143 29% 98% F 146 45% 97%	211 22% 101
0.534 5.50 5.48 8-32 5.3-21 4-16 3.3-13 F 118 70% 100% F 136 29% 98% F 140 48% 97%	202 23% 102
0.557 6.00 5.98 8.3-33 5.5-22 4.3-17 3.3-13 F 115 73% 1100% F 129 29% 98% F 134 50% 96%	195 24% 102
	80-015 (40280-01 s VMD <141 <60
	5 VIVID < 141 < 00
10381 1.25 1.24 3.3-13 3.8-15 1.9-76 1.5-61 - 205 1.09 1.00	
0.381 1.25 1.24 3.3-13 3.8-15 1.9-7.6 1.5-6.1 F 205 19% 100% 0.417 1.50 1.49 3.5-14 2.5-10 2.1-8.3 1.7-6.7 F 1.95 2.2% 100% C 3.06 1.0% 9.4%	
0.417 1.50 1.49 3.5-14 2.5-10 2.1-8.3 1.7-6.7 F 195 22% 100% C 306 10% 94%	424 4% 869
0.417 1.50 1.49 3.5-14 2.5-10 2.1-8.3 1.7-6.7 F 195 22% 100% C 306 10% 94%	424 4% 86° 394 5% 89°
80	394 5% 89° 371 6% 91°
80	394 5% 89° 371 6% 91° 352 7% 92°
80	394 5% 899 371 6% 919 352 7% 929 337 8% 939
80	394 5% 899 371 6% 919 352 7% 929 337 8% 939 324 8% 949
80	394 5% 899 371 6% 919 352 7% 929 337 8% 939 324 8% 949 313 9% 959
80	394 5% 899 371 6% 919 352 7% 929 337 8% 939 324 8% 949 313 9% 959 303 10% 959
80	394 5% 89° 371 6% 91° 352 7% 92° 337 8% 93° 324 8% 94° 313 9% 95° 303 10% 95° 295 10% 96°
80	394 5% 89° 371 6% 91° 352 7% 92° 337 8% 93° 324 8% 94° 313 9% 95° 303 10% 95° 295 10% 96° 80-02 (40280-0°
80	394 5% 89° 371 6% 91° 352 7% 92° 337 8% 93° 324 8% 94° 313 9% 95° 303 10% 95° 295 10% 96° 80-02 (40280-0°
80	394 5% 89° 371 6% 91° 352 7% 92° 337 8% 93° 324 8% 94° 313 9% 95° 303 10% 95° 295 10% 96° 80-02 (40280-0°
80	394 5% 89° 371 6% 91° 352 7% 92° 337 8% 93° 324 8% 94° 313 9% 95° 303 10% 95° 295 10% 96° 80-02 (40280-0°
80	394 5% 89° 371 6% 91° 352 7% 92° 337 8% 93° 324 8% 94° 313 9% 95° 303 10% 95° 295 10% 96° 80-02 (40280-0° 5 VMD <141 <60° 461 3% 80° 433 4% 83°
80	394 5% 89' 371 6% 91' 352 7% 92' 337 8% 93' 324 8% 94' 313 9% 95' 295 10% 96' 80-02 (40280-0) 5 WMD <141 <60' 461 3% 80' 443 4% 83' 412 5% 85'
80	394 5% 89' 371 6% 91' 352 7% 92' 337 8% 93' 324 8% 94' 313 9% 95' 295 10% 96' 80-02 (40280-0; 5 VMD <141 <66' 461 3% 80' 443 44% 83' 4412 5% 85' 394 5% 87'
80	394 5% 89' 371 6% 91' 352 7% 92' 337 8% 93' 324 8% 94' 313 9% 95' 303 10% 95' 295 10% 96' 80-02 (40280-0) 5 VMD -141 <60' 461 3% 80' 433 4% 83' 412 5% 85' 380 6% 88'
80	394 5% 89' 371 6% 91' 352 7% 92' 337 8% 93' 324 8% 94' 313 9% 95' 295 10% 96' 80-02 (40280-0) 5 WMD <141 <60' 443 4% 83' 412 5% 85' 394 5% 87' 380 6% 88' 368 6% 88'
80	394 5% 89' 371 6% 91' 352 7% 92' 337 8% 93' 324 8% 94' 313 9% 95' 295 10% 96' 80-02 (40280-0) 8 WMD <141 <60' 461 3% 80' 443 4% 83' 4412 5% 85' 394 5% 87' 380 6% 88' 368 6% 89' 357 7% 90'
80	394 5% 89' 371 6% 91' 352 7% 92' 337 8% 93' 324 8% 94' 313 9% 95' 295 10% 96' 80-02 (40280-0) 5 WMD <141 <60' 443 4% 83' 412 5% 85' 394 5% 87' 380 6% 88' 368 6% 88'

COMBO-JET 80° Spray Tips - PWM Spray Systems

Nozzle	Flow	L.		Applicat	tion Rate - Lit	res/Hectare	on 50cm		Spra	ay Clas	sificati	on; VM	D (Drop	olet Siz	e in μ);	%<14	1μ (Dri	ft %); 9	%<600	μ (Sma	all Drop	lets)	
Size & Angle	Rate L/min	Boom BAR	Tip BAR	Spa	cing w/ PWN	1 Sprayer Sys	stem	Closs		Series	-600	Class		Series				Series		Class		Series	-600
Tangio	Flow	Boom	Tip	Application	Speed (25%- on Speed (L/H	la on 50cm s	pacing) @	ER80	0-025	(4027)	0-025)	SR80	0-025	<141 (4028	B-025)	MR80	0-025	(4029)	0-025)	DR80	0-025	(4028)	0-025)
	L/min 0.629	1.25	BAR 1.22	50L/Ha 3.8-15	60L/Ha 3.3-13	70L/Ha 2.8-11	80L/Ha 2.4-9.4	Class	VMD 240	<141 15%	<600 100%		VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
80	0.689	1.50	1.46	4.3-17 4.8-19	3.5-14 4-16	3-12 3.5-14	2.5-10 3-12	M F	229 212	18% 23%	100% 100%		334 302	7% 11%	90% 92%	VC	434	4%	80%	XC	466	3%	76%
-025	0.890	2.50	2.44	5.3-21	4.5-18	3.8-15	3.3-13	F	200	26%	100%	С	280	14%	94%	VC	400	6%	83%	VC	442	4%	79%
Nozzles	0.974 1.053	3.00	2.92 3.41	5.8-23 6.3-25	4.8-19 5.3-21	4.3-17 4.5-18	3.8-15 4-16	F	191 183	29% 31%	100% 100%		263 249	16% 18%	95% 95%	C C	374 354	7% 8%	85% 87%	VC VC	424 409	5% 5%	81%
	1.125 1.193	4.00	3.90 4.39	6.8-27 7.3-29	5.8-23 6-24	4.8-19 5-20	4.3-17 4.5-18	F	177 171	33% 35%	100% 100%		238 228	20%	96% 96%	C C	337 323	9% 10%	88% 89%	VC C	396 385	6% 6%	84% 85%
	1.258	5.00	4.87	7.5-30	6.3-25	5.5-22	4.8-19	F	167	37%	100%	M	220	22%	97%	C	311	10%	90%	С	376	7%	86%
	1.319 1.378	5.50 6.00	5.36 5.85	8-32 8.3-33	6.5-26 7-28	5.8-23 6-24	5-20 5.3-21	F	162 159	38% 40%	99% 99%	F F	213 207	24% 25%	97% 97%	C	301 291	11%	91% 91%	C	367 360	7% 8%	87% 87%
	Flow L/min	Boom BAR	Tip BAR	Applicatio 60L/Ha	n Speed (L/H 75L/Ha	a on 50cm s 100L/Ha	pacing) @ 120L/Ha	ER8 Class	0-03 VMD	(4027 <141	0-03) <600		0-03 VMD	(4028 <141		MR8 Class		(4029 <141	(0-03) <600	DR8 Class		(4028 <141	
	0.751	1.25	1.21	3.8-15	3-12	2.3-9	1.9-7.5	M	240	16%	99%					oidoo	*****		1000	Oldoo	5		1000
80	0.822 0.950	1.50 2.00	1.45	4-16 4.8-19	3.3-13 3.8-15	2.5-9.9 2.8-11	2.1-8.2 2.4-9.5	M	231 217	18% 22%	99% 99%	VC C	393 353	5% 9%	87% 89%	VC	443	4%	80%	XC	489	3%	70%
-03 Nozzles	1.062 1.163	3.00	2.41	5.3-21 5.8-23	4.3-17 4.8-19	3.3-13 3.5-14	2.8-11 3-12	F	207 199	25% 27%	99% 99%	C	325 304	11%	90%	VC C	409 383	6% 7%	83% 86%	XC VC	462 441	4% 4%	75% 78%
11022.00	1.256	3.50	3.38	6.3-25	5-20	3.8-15	3.3-13	F	193	29%	99%	Č C	287 273	15% 16%	92%	C	362	8% 9%	87%	VC VC	424	5%	80%
	1.343 1.424	4.00	3.86 4.34	6.8-27 7-28	5.3-21 5.8-23	4-16 4.3-17	3.3-13 3.5-14	F	187 183	31% 32%	99% 99%	M	261	17%	92% 93%	C C	346 331	10%	89% 90%	С	410 398	6% 6%	82% 83%
	1.502 1.575	5.00	4.82 5.30	7.5-30 7.8-31	6.3-25	4.5-18 4.8-19	3.8-15 4-16	F	179 175	34%	99% 99%	M	251 243	18% 19%	93% 94%	C C	319 308	10% 11%	91% 91%	C C	387 378	7% 7%	84% 85%
	1.645	6.00	5.79	8.3-33	6.5-26	5-20	4-16	F	172	36% (4027	99%	M	235 0-04	20%	94%	C MR8	299	11%	92%	С	370 0-04	8%	86%
	Flow L/min	Boom	Tip BAR	75L/Ha	n Speed (L/H 100L/Ha	125L/Ha	150L/Ha	Class	0-04 VMD	<141	<600	Class	VMD		<600		VMD	(4029 <141	<600	Class	VMD	(4028 <141	<600
	0.99 1.08	1.25	1.17	4-16 4.3-17	3-12 3.3-13	2.4-9.5 2.5-10	2-7.9 2.2-8.6	M	260 250	15% 17%	99% 99%	С	393	3%	83%								
80 -04	1.25 1.40	2.00	1.87	5-20 5.5-22	3.8-15 4.3-17	3-12 3.3-13	2.5-10 2.8-11	M	235 224	20%	99% 99%	C C	360 334	6% 8%	86% 88%	VC VC	433 405	5% 6%	79% 82%	XC	556 527	2% 2%	59% 65%
Nozzles	1.53	3.00	2.81	6-24	4.5-18	3.8-15	3-12	F	215	24%	99%	С	314	10%	89%	С	383	7%	84%	XC	504	3%	68%
	1.65 1.77	3.50 4.00	3.28	6.5-26 7-28	5-20 5.3-21	4-16 4.3-17	3.3-13 3.5-14	F	208 202	25% 27%	99% 99%	C	296 281	11% 13%	90% 91%	C C	366 351	8% 9%	86% 87%	XC	486 471	4% 4%	71% 74%
	1.87 1.97	4.50 5.00	4.22 4.69	7.5-30 8-32	5.5-22 6-24	4.5-18 4.8-19	3.8-15 4-16	F	197 193	28% 29%	99% 99%	M	268 256	14% 15%	92% 92%	C C	339 329	10% 11%	88% 89%	XC VC	458 446	4% 5%	75% 77%
	2.07	5.50	5.15	8.3-33	6.3-25	5-20	4.3-17	F	189	30%	99%	M	245	16%	93%	С	319	12%	90%	VC	436	5%	78%
	2.16 Flow	6.00 Boom	5.62 Tip	8.8-35 Application	6.5-26 on Speed (L/H	5.3-21 la on 50cm s	4.3-17 pacing) @	F ER8	186 0-05	31%	99% 0-05)	M SR8	235 0-05	17% (4028	93%	C MR8	311 0-05	12% (4029	90%	C DR8	427 0-05	5% (4028	79% 0-05)
	1.21	1.25	1.13	100L/Ha 3.8-15	125L/Ha 3-12	150L/Ha 2.4-9.7	175L/Ha 2.1-8.3	Class	VMD 311	<141 9%	<600 95%	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
00	1.33	1.50	1.36	4-16	3.3-13	2.8-11	2.3-9.1	С	297	11%	95%	VC	442	3%	78%								
80 -05	1.53 1.72	2.00	1.81 2.26	4.5-18 5.3-21	3.8-15 4-16	3-12 3.5-14	2.8-11 3-12	C M	276 261	15% 17%	95% 95%	VC C	404 375	6% 8%	81% 84%	XC	491	3%	70%	XC	563	2%	58%
Nozzles	1.88 2.03	3.00	3.17	5.8-23 6-24	4.5-18 4.8-19	3.8-15 4-16	3.3-13 3.5-14	M	249 240	20%	95% 95%	C C	351 331	10% 11%	85% 87%	VC VC	467 448	4% 5%	73% 76%	XC	540 522	2% 3%	62% 65%
	2.17	4.00	3.62	6.5-26	5.3-21	4.3-17	3.8-15	M	232	23%	95%	С	313	12%	88%	VC	432	5%	78%	XC	506	3%	67%
	2.30	4.50 5.00	4.08 4.53	7-28 7.3-29	5.5-22 5.8-23	4.5-18 4.8-19	4-16 4.3-17	M	225 219	24% 26%	95% 95%	C C	298 284	14% 15%	89% 89%	VC C	418 407	6% 6%	79% 81%	XC	493 482	3% 4%	70% 71%
	2.54 2.66	5.50 6.00	4.98 5.43	7.8-31 8-32	6-24 6.5-26	5-20 5.3-21	4.3-17 4.5-18	F	214 209	27% 28%	95% 95%	C M	272 260	15% 16%	90% 91%	C C	396 387	7% 7%	82% 83%	VC VC	471 462	4% 4%	73% 74%
	Flow L/min	Boom BAR	Tip BAR		n Speed (L/H 150L/Ha			ER8 Class	0-06	(4027 <141			0-06	(4028 <141		MR8		(4029 <141	0-06)	DR8 Class	0-06	(4028 <141	
	1.43	1.25	1.09	3.5-14	2.8-11	2.5-9.8	2.2-8.6	C	338	10%	92%	Ulass	VIVID	< 141	<000	Ulass	VIVID	< 141	<000	Ulass	VIVID	K141	<000
80	1.56 1.80	1.50 2.00	1.30	3.8-15 4.3-17	3-12 3.5-14	2.8-11 3-12	2.4-9.4 2.8-11	C	326 307	12% 15%	92% 91%	VC	439	4%	78%								
-06 Nozzles	2.02	2.50 3.00	2.17	4.8-19 5.3-21	4-16 4.5-18	3.5-14 3.8-15	3-12 3.3-13	C C	293 283	17% 19%	91% 91%		414 395	5% 6%	81% 83%	XC XC	520 499	3% 3%	65% 69%	XC	591 570	2% 2%	52% 56%
14022103	2.39	3.50	3.04	5.8-23	4.8-19	4-16	3.5-14	С	274	21%	91%	С	380	7%	85%	XC	481	4%	71%	XC	553	2%	59%
	2.55 2.71	4.00	3.48	6-24 6.5-26	5-20 5.5-22	4.3-17 4.8-19	3.8-15 4-16	M	266 260	22% 23%	90% 90%	С	367 356	8% 9%	86% 87%	VC VC	467 454	4% 5%	74% 75%	XC	539 526	2% 3%	61% 63%
	2.85 2.99	5.00	4.35 4.78	6.8-27 7.3-29	5.8-23 6-24	5-20 5.3-21	4.3-17 4.5-18	M	254 250	25% 26%	90% 90%		347 338	9% 10%	88% 89%	VC VC	443 433	5% 5%	77% 78%	XC	516 506	3% 3%	64% 66%
	3.12 Flow	6.00 Boom	5.22 Tip	7.5-30	6.3-25 on Speed (L/H	5.3-21	4.8-19	M	245 0-08	27%	90%	C SR8	331	10%	90%	VC MR8	425	6%	79%	XC	498 0-08	3% (4028	67%
	L/min	BAR	BAR	150L/Ha	200L/Ha	250L/Ha	300L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class			<600		VMD		<600
	2.29	2.00	1.58 1.97	4.5-18 5.3-21	3.5-14 3.8-15	2.8-11 3-12	2.3-9.2 2.5-10	C	349 322	14% 16%	88% 90%		529 497	6% 7%	51% 58%	UC	546	6%	62%	UC	625	3%	51%
80	2.81 3.03	3.00	2.37	5.5-22 6-24	4.3-17 4.5-18	3.3-13 3.8-15	2.8-11 3-12	M	302 285	19% 21%	91% 93%	XC	470 448	8% 9%	62% 66%	UC	520 499	7% 8%	66% 69%	UC	603 584	3% 4%	55% 58%
-08	3.24	4.00	3.16	6.5-26	4.8-19	4-16	3.3-13	M	272	22%	93%	XC	429	10%	69%	UC	482	9%	72%	UC	569	4%	60%
Nozzles	3.44	4.50 5.00		7-28 7.3-29	5.3-21 5.5-22	4.3-17 4.3-17	3.5-14 3.5-14	F	261 251	24% 25%	94% 95%	XC	412 397	10% 11%	71% 73%	XC	467 454	9% 10%	74% 75%	UC	556 544	5% 5%	62% 64%
	3.80	5.50	4.34	7.5-30 8-32	5.8-23 6-24	4.5-18 4.8-19	3.8-15 4-16	F	243 235	26% 27%	95% 95%	XC VC	383 371	11% 12%	75% 76%	XC	442 432		77% 78%	UC	534 525	5% 6%	66% 67%
	Flow L/min	Boom BAR	Tip BAR	Application 200L/Ha		a on 50cm s 300L/Ha		ER8	0-10 VMD	(4027 <141	0-10) <600	SR8 Class	0-10 VMD	(4028 <141	8-10) <600	MR8 Class	0-10 VMD	(4029 <141		DR8		(4028	0-10) <600
	3.03	2.50	1.77	4.5-18	3.8-15	3-12	2.5-10	XC	425	11%	80%									σιασσ			
80	3.32 3.58	3.00	2.12	5-20 5.5-22	4-16 4.3-17	3.3-13 3.5-14	2.8-11 3-12	XC VC	402 383	12% 13%	82% 83%		508 487	7% 7%	56% 60%	UC UC	543 525	5% 6%	63% 65%	UC	609 593	4% 5%	53% 55%
-10 Nozzles	3.83 4.06	4.00	2.82	5.8-23 6-24	4.5-18 5-20	3.8-15 4-16	3.3-13 3.5-14	C	368 355	14% 15%	84% 85%	XC	468 452	8% 8%	63% 66%	UC	510 497	6% 7%	67% 69%	UC	580 569	5% 6%	57% 59%
NOZZICS	4.28	5.00	3.53	6.5-26	5.3-21	4.3-17	3.8-15	С	344	16%	86%	XC	437	9%	68%	UC	486	7%	70%	UC	559	6%	61%
	4.49 4.69	5.50 6.00	3.88 4.24	6.8-27 7-28	5.5-22 5.8-23	4.5-18 4.8-19	3.8-15 4-16	M	334 325	17% 18%	87% 87%	XC	424 412	9% 10%	70% 71%	XC	476 467	7% 8%	72% 73%	UC	550 542	6% 6%	62% 63%

COMBO-JET 80° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE S572.1 Standard)

Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data (b) yat operation, from paray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.) can vary between testing equipment and method, and is provided as an educational resource only.

Extra melly Coarse (XC)

Ultra Coarse (UC)

Ultra Coarse (UC) ASABE Spray Classification (ASABE S572.1 Standard)

Fine (F)

VMD (Volume Median Diameter) sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141μ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially.

% <600µ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage As % of useful droplets lowers, overall coverage is reduced.

Nozzie Flow Rate	TIPS SIZEC	1 up to 1 10	-00 verilleu	UII FIIASE DU	ррен гани	ie Analyzer (PDPA); up	ps sized over 110-00 v	enned on waivern.	Ultra Coars	c (00)			_	_	_										
Size & Rate Lymin BAR Lymin Lymin BAR Lymin Lymin BAR Lymin Lymin BAR Lymin	Noz	zle	Flow		_	Applicat	ion Rate - Lit	res/Hectare	on 50cm		Spra	ay Clas	sificatio	n; VMI	D (Drop	let Size	e in μ);	%<14	1μ (Dri	ft %); 9	%<600	μ (Sma	II Drop	lets)	
Part											ER80°	Series			SR80°	Series			MR80°	Series	;		DR80°	Series]
Flow Boom Tip Application Speed (UHa on 50cm spacing) @ ERBO-125 (40220-125) SRB0-125 (40286-125) MRBO-125 (40280-125) MRBO-125 (40280-155) MRBO-15 (40280	Ang	jle	L/min	DAK	DAK	@ Sprayer	Speed (25%-	100% Duty	Cycle) - knh	Class	VMD	<141	<600					Class	VMD	<141	<600				
L/min BAR BAR ASR 250 L152 4.3-17 3.5-14 3-12 2.8-11 XC 447 10% 77% UC 546 6% 48% 48% 4.5			Flow	Boom	Tip																				
3.51 2.50 1.52 4.3-17 3.5-14 3-12 2.8-11 XC 447 10% 77% UC 546 6% 48%																									
80		_		2.50	1.52																				
Nozzles	80																								
Nozzles 4.44 4.00 2.42 5.3-21 4.5-18 3.8-15 3.3-13 VC 396 12% 82% UC 490 8% 58% UC 569 6% 58% UC 508 4% 52% 4.96 5.00 3.03 6-24 5-20 4.3-17 3.8-15 C 374 13% 84% XC 476 8% 61% UC 557 6% 60% UC 596 5% 55% 55% 55% 55% 55% 55% 55% 55% 55%	-12			3.50	2.12	5-20	4.3-17	3.5-14	3-12	XC	410	11%	81%	UC	506	7%	56%	UC	582	5%	56%	UC	622	4%	50%
4.71 4.50 2.73 5.8-23 4.8-19 4-16 3.5-14 VC 384 13% 83% XC 476 88% 61% UC 557 69% 60% UC 596 59% 54%																									
4.96 5.00 3.03 6.24 5-20 4.3-17 3.8-15 C 374 13% 84% XC 463 9% 63% UC 547 7% 62% UC 586 5% 55% 5.20 5.50 3.33 6.3-25 5.3-21 4.5-18 4.16 C 365 14% 85% XC 451 9% 66% UC 533 7% 66% UC 577 57%			4.71	4.50	2.73	5.8-23	4.8-19	4-16	3.5-14	VC	384	13%	83%	XC		8%		UC	557	6%	60%	UC	596	5%	
5.20 5.50 3.33 6.3-25 5.3-21 4.5-18 4-16 C 365 14% 85% XC 451 9% 64% UC 538 7% 63% UC 577 5% 57% 55% 58%			4.96	5.00	3.03	6-24	5-20	4.3-17	3.8-15	С	374	13%	84%	XC	463	9%	63%	UC	547	7%	62%	UC		5%	55%
Flow Boom Tip Application Speed (L/Ha on 50cm spacing)				5.50		6.3-25	5.3-21	4.5-18	4-16	С	365	14%	85%	XC	451	9%	64%	UC	538	7%	63%	UC	577	5%	57%
L/min BAR BAR BAR BAR 300L/Ha 400L/Ha 450L/Ha 500L/Ha 500L/			5.43	6.00	3.64	6.5-26	5.5-22	4.8-19	4-16	С	357	14%	86%	XC	441	9%	66%	UC	530	7%	64%	UC	569	5%	58%
4.26 3.00 1.55 4.3-17 3.3-13 2.8-11 2.5-10 XC 448 8% 77% UC 588 5% 41%			Flow			Applicatio	n Speed (L/H	a on 50cm s	pacing) @	ER80		(4027	0-15)	SR8	0-15	(4028	8-15)		0-15	(4029	0-15)	DR8	0-15	(4028	
80			L/min	BAR	BAR	300L/Ha	400L/Ha	450L/Ha	500L/Ha		VMD	<141		Class	VMD	<141		Class	VMD	<141	<600	Class	VMD	<141	<600
A-91 A-90 2.07 5-20 3.8-15 3.3-13 3-12 XC 412 10% 79% UC 554 6% 47% UC 513 7% 66% UC 637 3% 48%			4.26		1.55	4.3-17	3.3-13	2.8-11	2.5-10																
Nozzles 5.21 4.50 2.32 5.3-21 4-16 3.5-14 3.3-13 XC 398 11% 80% UC 540 6% 50% UC 499 8% 68% UC 624 3% 50% 5.99 5.90	80)	4.60	3.50	1.81	4.5-18	3.5-14		2.8-11																
5.49 5.00 2.58 5.5-22 4-16 3.8-15 3.3-13 VC 386 12% 81% UC 527 6% 52% UC 487 8% 69% UC 612 3% 52% 5.76 5.50 2.84 5.8-23 4.3-17 3.8-15 3.5-14 VC 376 13% 81% UC 516 6% 54% XC 477 9% 71% UC 602 3% 54% 5	-1:						3.8-15																		
5.76 5.50 2.84 5.8-23 4.3-17 3.8-15 3.5-14 VC 376 13% 81% 0C 516 6% 54% XC 477 9% 71% 0C 602 3% 54% 6.02 6.00 3.10 6-24 4.5-18 4-16 3.5-14 C 366 13% 82% 0C 505 7% 56% XC 467 9% 72% 0C 593 4% 55% VM 55% VM 54% 55% 55% 56% VM 54% 55% 55% 56% VM 54% 55% 55% 56% VM 54% 55% 55% 50% VM 54% 55% 50% 50% VM 54% 55% 50% 50% VM 54% 55% 50% VM 54% 55% 50% 50% 50% 50% 50% 50% 50% 50% 50	Nozz																								
6.02 6.00 3.10 6-24 4.5-18 4-16 3.5-14 C 366 13% 82% UC 505 7% 56% XC 467 9% 72% UC 593 4% 55% Flow Boom Tip Application Speed (L/Ha on 50cm spacing)																									
Flow Boom Tip Application Speed (L/Ha on 50cm spacing)																									
Nozzles L/min BAR BAR BAR A00L/Ha 500L/Ha 600L/Ha 700L/Ha Class VMD <141 <600 Class VMD			6.02	6.00	3.10																			4%	55%
80																									
80														Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
-20 Nozzles																									
Nozzles 6.55 5.50 2.06 5-20 4-16 3.3-13 2.8-11 XC 461 9% 73% UC 551 5% 48% UC 564 5% 58% UC 629 3% 50% 6.84 6.00 2.25 5.3-21 4-16 3.5-14 3-12 XC 450 9% 74% UC 540 6% 50% UC 552 5% 60% UC 616 3% 52% Flow Boom Tip Application Speed (L/Ha on 50cm spacing) ER80-25 (40270-25) SR80-25 (40288-25) MR80-25 (40290-25) DR80-25 (40280-25) L/min BAR BAR 500L/Ha 600L/Ha 700L/Ha 800L/Ha 600 Class VMD <141 <600 Class VMD <																									
6.84 6.00 2.25 5.3-21 4-16 3.5-14 3-12 XC 450 9% 74% UC 540 6% 50% UC 552 5% 60% UC 616 3% 52% Flow Boom Tip Application Speed (L/Ha on 50cm spacing) © ER80-25 (40270-25) SR80-25 (40288-25) MR80-25 (40290-25) DR80-25 (40280-25) L/min BAR BAR 500L/Ha 600L/Ha 700L/Ha 800L/Ha 800L/Ha 60.71 5.00 1.39 4-16 3.3-13 3-12 2.5-10 UC 514 7% 68% WID <141 <600 Class VMD <141 <	_																								
Flow Boom Tip Application Speed (L/Ha on 50cm spacing) @ ER80-25 (40270-25) SR80-25 (40288-25) MR80-25 (40290-25) DR80-25 (40280-25) L/min BAR BAR 500L/Ha 600L/Ha 700L/Ha 800L/Ha 600 Class VMD <141 <600 Cla	Nozz																								
L/min BAR BAR 500L/Ha 600L/Ha 700L/Ha 800L/Ha Class VMD <141 <600																									
80 6.71 5.00 1.39 4-16 3.3-13 3-12 2.5-10 UC 514 7% 68%																									
-25 7.04 5.50 1.53 4.3-17 3.5-14 3-12 2.8-11 UC 501 8% 69%														Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
Nozzles 7.36 6.00 1.67 4.5-18 3.8-15 3.3-13 2.8-11 UC 490 8% 70% UC 535 5% 50%																									
	Nozz	les	7.36	6.00	1.67	4.5-18	3.8-15	3.3-13	2.8-11	UC	490	8%	70%	UC	535	5%	50%								

COMBO-JET 110° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE 5572.1 Standard)
Spray quality is categorized based on DV0.1 and VMD droplet sizes.

Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunnel color)
use), has been used to classify spray quality for this chart. Extra data (e. y MMD, etc.) can vary between testing equipment and method, and is provided as an educational resource only. Fine (F)

VMD (Volume Median Diameter) The median droplet (in μ) for a sprayed volume. Half of the volume is made of droplets smaller, with

% <141µ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray

% <600µ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage. As % of useful droplets lowers,

L	between ps sized up to	testing equi 110-06 verifie	pment an d on Phase	d method, Doppler Parl	and is provided ticle Analyzer (PDPA)	as an educatior); tips sized over 1	nal resource only. 10-06 verified on Ma	∟ Extre alvem. ■ Ultra	mely Coar	Coarse se (UC)	(XC)				oplets la			ift will in							piets lowers, is reduced.
F	Mozzlo	Max			Applie	ation Data	Litron/Hon	toro on			Spray	Classif	icatio	n; VMC) (Drop	let Size	in μ)	; %<14	41μ (Di	rift %);	%<6	00μ (S	mall Di	roplets)	
	Nozzle Size &	Flow	Boom				- Litres/Hec PWM Spraye			ER110)° Serie)° Serie			MR110					0° Seri		UR Series
	Angle	Rate L/min	BAR	psi	@ Spraye	r Speed - kp	h (25-100% [Outy Cycle)	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class				Class VMD
		Flow	Boom	Tip			Ha on 50cm		ER1	10-01		31-01)													
		L/min 0.254	1.25	1.25	20L/Ha 3.8-15	30L/Ha 2.5-10	40L/Ha 1.9-7.6	50L/Ha 1.5-6.1	Class	151	<141 43%	<600 100%													-
		0.279	1.50	1.49	4.3-17	2.8-11	2.1-8.4	1.7-6.7	F	147	46%	100%													
	110 -01	0.322	2.00		4.8-19 5.5-22	3.3-13 3.5-14	2.4-9.7 2.8-11	1.9-7.7 2.2-8.6	F	140 135	50% 54%	100%						_		-		-	-		-
	lozzles	0.360		2.49	6-24	4-16	3-12	2.4-9.5	F	131	57%	100%													-
		0.426	3.50	3.49	6.5-26	4.3-17	3.3-13	2.5-10	F	128	59%	100%]
		0.455 0.483	4.00		6.8-27 7.3-29	4.5-18 4.8-19	3.5-14 3.5-14	2.8-11 3-12	F	125 122	62% 63%	100%											\vdash		-
`		0.509	5.00	4.98	7.8-31	5-20	3.8-15	3-12	F	120	65%	100%													
		0.534	5.50		8-32	5.3-21	4-16 4.3-17	3.3-13	F	118 116	67%	100%						-					-		-
		0.557 Flow	6.00 Boom		8.3-33 Application	5.5-22 n Speed (L/F	4.3-17 Ha on 50cm :	3.3-13 spacing) @	ER11				SR11	0-015	(4028	7-015)	MR1	10-015	(4029	1-015)	DR1	10-015	(4028	6-015)	
		L/min	BAR	BAR	35L/Ha	50L/Ha	60L/Ha	75L/Ha		VMD	<141	<600				<600									
>		0.381	1.25	1.49	3.3-13 3.5-14	3.8-15 2.5-10	1.9-7.6 2.1-8.3	1.5-6.1 1.7-6.7	F	155 151	39% 42%	100%	М	233	19%	98%	С	355	8%	91%	VC	394	5%	90%	-
ļ	110	0.481	2.00	1.98	4.3-17	3-12	2.4-9.6	1.9-7.7	F	145	46%	100%		217	23%	98%	С	323	11%	94%	С	368	7%	92%	
۱,	-015 lozzles	0.538	3.00	2.48	4.5-18 5-20	3.3-13 3.5-14	2.8-11 3-12	2.2-8.6 2.4-9.4	F	141 137	50% 53%	100%	F	205 195	27% 30%	98%	C C	298 279	14% 16%	96% 97%		346 329	8% 10%	93%	
И.	1022163	0.637	3.50		5.5-22	3.8-15	3.3-13	2.5-10	F	134	55%	100%	F	186	32%	98%	M	262	18%	98%		315		95%	
ł		0.681	4.00		5.8-23	4-16	3.5-14	2.8-11	F	132	57%	100%	F	179	34%		M	248	20%	98%		302	12%	95%]
		0.722 0.761	4.50 5.00		6.3-25 6.5-26	4.3-17 4.5-18	3.5-14 3.8-15	3-12 3-12	F	129 127	59% 61%	100%	F	173 167	36% 37%	98%	M F	226 217	23% 24%	99%		282 273	14%	96% 96%	-
		0.798	5.50	5.45	6.8-27	4.8-19	4-16	3.3-13	F	125	63%	100%	F	162	39%	98%	F	209	25%	99%	M	265	15%	97%	
		0.834 Flow	6.00 Boom	5.95 Tip	7.3-29	5-20	4.3-17 Ha on 50cm	3.3-13	FR1	124 10-02	(4028	100% 31-02)	SR1	157 10-02	40%	98%	F MR1	195 10-02		100%		252 10-02	17%	97%	
h		L/min	BAR	BAR	40L/Ha	50L/Ha	60L/Ha	70L/Ha	Class	VMD	<141	<600	Class				Class				_		<141		
		0.505	1.25		3.8-15	3-12	2.5-10	2.2-8.7	F	177	30%	99%	N.4	222	100/	000/									
2	110	0.554	1.50 2.00		4.3-17 4.8-19	3.3-13 3.8-15	2.8-11 3.3-13	2.4-9.5 2.8-11	F	171 161	33%	100%		233 220	19% 22%	99%	С	317	11%	95%	VC	433	5%	82%	-
	-02	0.715	2.50	2.46	5.3-21	4.3-17	3.5-14	3-12	F	154	43%	100%	F	210	25%	99%	С	297	13%	96%	VC	412	6%	85%	
5	lozzles	0.783 0.846	3.00		5.8-23 6.3-25	4.8-19 5-20	4-16 4.3-17	3.3-13 3.5-14	F	148 144	46% 49%	100%	F	202 195	27% 29%	99% 99%	C M	281 267	15% 17%	97% 97%		394 378	6% 7%	87% 88%	-
-		0.904	4.00	3.93	6.8-27	5.5-22	4.5-18	3.8-15	F	139	52%	100%	F	189	30%	99%	M	256	18%	97%	С	364	8%	90%	
		0.959	4.50		7.3-29	5.8-23	4.8-19	4-16	F	136	54%	100%	F	184	32%	99%	M	237 229	21% 22%	98% 98%		339	9%	91% 92%	-
4		1.011	5.00		7.5-30 8-32	6-24 6.3-25	5-20 5.3-21	4.3-17 4.5-18	F	132 129	56% 57%	100%	F	179 175	33%	99%	M	222	23%	98%		328 318	10%	93%	-
9		1.107	6.00	5.90	8.3-33	6.8-27	5.5-22	4.8-19	F	126	59%	100%	F	171	35%	99%	F	210	25%	99%	С	299	11%		UD110 00E
		Flow L/min	Boom BAR	Tip BAR	Application 50L/Ha	n Speed (L/I 60L/Ha	Ha on 50cm : 70L/Ha	spacing) @ 80L/Ha	ER11 Class		(4028 <141														UR110-025 Class VMD
		0.629	1.25	1.22	3.8-15	3.3-13	2.8-11	2.4-9.4	F	196	28%	100%								1000				1000	(40292-025)
Ž	110	0.689 0.796	1.50 2.00	1.46	4.3-17 4.8-19	3.5-14 4-16	3-12 3.5-14	2.5-10 3-12	F	193 187	28% 29%	100%	M	251 237	16% 19%	98% 98%	С	353	8%	90%	VC	437	5%	79%	UC 657
	-025	0.890	2.50		5.3-21	4.5-18	3.8-15	3.3-13	F	183	30%	100%	M	227	22%	98%	С	337	10%	92%	VC	418	6%	83%	UC 564
1	lozzles	0.974 1.053	3.00		5.8-23 6.3-25	4.8-19 5.3-21	4.3-17 4.5-18	3.8-15 4-16	F	179 177	30%	100%	M	218 211	24% 25%	98% 98%	C	322 310	11% 12%	93%		401 386	6% 7%	86% 88%	UC 541 UC 522
		1.125	4.00		6.8-27	5.8-23	4.8-19	4.3-17	F	174	31%	100%	F	204	27%	98%	C C	299	13%	95%		373	8%	89%	
		1.193	4.50		7.3-29	6-24	5-20	4.5-18	F	172	31%	100%	F	199	28%	98%	C C	280	15%	96%	С	350	9%	91%	
		1.258 1.319	5.00	5.36	7.5-30 8-32	6.3-25 6.5-26	5.5-22 5.8-23	4.8-19 5-20	F	170 168	31% 31%	100%	F	194 189	29% 30%	98% 98%	M	271 263	16% 16%	96% 96%		340 331	9%	92%	XC 461 XC 448
		1.378	6.00	5.85	8.3-33	7-28	6-24	5.3-21	F	166	31%	100%	Ė	185	31%	98%	M	249	18%	97%	С	314	10%	94%	XC 426
		Flow L/min	Boom BAR	Tip BAR	Application 60L/Ha	n Speed (L/I	Ha on 50cm : 100L/Ha	spacing) @	ER1	10-03 VMD	(4028	31-03)	SR1	10-03 VMD	(4028	37-03) -600	MR1	10-03	(4029	91-03) -600	DR1	10-03	(4028	36-03) -600	UR110-03
		0.751			3.8-15	3-12	2.3-9	1.9-7.5	F	203	25%	99%	Class	VIVID	<141	<000	Ulass	VIVID	<141	<000	Olasa	VIVID	<141	<000	(40292-03)
	110	0.822			4-16	3.3-13	2.5-9.9	2.1-8.2	F		27%	99%		331	8%	93%	VO	400	C0/	050/	VO	400	00/	700/	110 044
	110 -03	0.950 1.062	2.00		4.8-19 5.3-21	3.8-15 4.3-17	2.8-11 3.3-13	2.4-9.5 2.8-11	F	186 178	30%	99%	C	306 287	11% 14%		VC C	403 376	6% 8%	85% 89%		488 460	3% 4%	72%	UC 644 UC 606
ı	lozzles	1.163	3.00	2.89	5.8-23	4.8-19	3.5-14	3-12	F	172	35%	98%	С	272	16%	96%	С	354	9%	91%	VC	437	5%	81%	UC 575
		1.256 1.343	3.50 4.00	3.38	6.3-25 6.8-27	5-20 5.3-21	3.8-15 4-16	3.3-13 3.3-13	F	166 161	37% 39%	98% 97%	M	258 247	17% 19%		C	335 319	10% 11%	93%		417 400	6% 6%	84%	UC 549 UC 527
		1.424	4.50	4.34	7-28	5.8-23	4.3-17	3.5-13	F	157	40%	97%		237	20%		C C	305	12%	95%		385	7%		UC 507
N		1.502	5.00	4.82	7.5-30	6-24	4.5-18	3.8-15	F	153	41%	97%	M	228	21%	98%	С	292	13%	95%	С	372	7%	88%	UC 489
		1.575 1.645			7.8-31 8.3-33	6.3-25 6.5-26	4.8-19 5-20	4-16 4-16	F	150 147	42% 43%	97% 96%	F	220 212	22%	98% 98%	M	281 270	14% 14%	96% 96%		359 348	8%		XC 473 XC 458
	INTE: 10D		ID oprov	ting ingl	udo pro orifio		one are not int		hotwo	on diffor	ont onre		difford	nt corio	2Chow	n applied	tion ir	formatic	n ic hac			ΩΛ°E i		allad an	ironment and

COMBO-JET 110° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

	reher	nsive	rate	e & spe	ed cha	rts for	any no	ZZIE	e spa															
Nozzle Size &	Flow Rate	Boom	Tip	Applica	ation Rate - acing w/ P	Litres/Hec	tare on		FR110	Spray o Serie) (Drop)° Serie				41μ (Dr)° Serie				nall Dr o Serie		UR Series
Angle	L/min	BAR	psi		r Speed - kpl			Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class VMD
	Flow L/min	Boom BAR	Tip BAR	Application 75L/Ha	1 Speed (L/H 100L/Ha	a on 50cm 125L/Ha		ER1 Class		(4028 <141		SR1 ^o Class									10-04 VMD	(4028 <141		UR110-04 Class VMD
	1.081	1.50	1.41	4.3-17	3.3-13	2.5-10	2.2-8.6	M	240	19%	97%	Uldaa	VIVID	<141	<000	Uldaa	VIVID	< 141	<000	Class	VIVID	< 141	<000	(40292-04
440	1.248	2.00	1.87	5-20	3.8-15	3-12	2.5-10	M	229	21%	97%	C	317	11%	94%	VC	429	4%	82%		524	3%	66%	110 010
110 -04	1.396 1.529	3.00	2.34	5.5-22 6-24	4.3-17 4.5-18	3.3-13 3.8-15	2.8-11 3-12	M	221 214	23% 24%	97% 96%	C	297 281	13% 14%	95% 95%	VC C	399 374	6% 7%	87% 90%		492 467	4% 4%	72% 76%	UC 616 UC 588
Nozzles	1.651	3.50	3.28	6.5-26	5-20	4-16	3.3-13	Ė	208	26%	96%	M	268	16%	96%	С	353	8%	92%	VC	445	5%	79%	UC 565
	1.765	4.00	3.75	7-28	5.3-21	4.3-17	3.5-14	F	203	27%	96%	M	256	17%	96%	C	335	9%	93%		426	5%	81%	UC 544
	1.872 1.974	4.50 5.00	4.22	7.5-30 8-32	5.5-22 6-24	4.5-18 4.8-19	3.8-15 4-16	F	199 195	28% 29%	96% 96%	M	246 236	18% 19%	97% 97%	C	319 304	10% 10%	94% 95%		410 395	6% 6%	83% 85%	UC 527 UC 510
	2.070	5.50	5.15	8.3-33	6.3-25	5-20	4.3-17	F	191	30%	95%	M	228	20%	97%	С	291	11%	95%	С	381	7%	86%	UC 496
	2.162 Flow	6.00 Boom	5.62 Tip	8.8-35	6.5-26 1 Speed (L/H	5.3-21	4.3-17	F ED1	188 10-05	30% (4028	95%	M QD1	220 10-05	21%	97% 7-05)	C MD1	280 10-05	11%	96%	C	369 10-05	7%	87% 86-05)	UC 483 UR110-05
	L/min	BAR	BAR	100L/Ha	125L/Ha	150L/Ha	175L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class		<141	<600		VMD	<141	<600	Class VMD
	1.33	1.50	1.36	4-16	3.3-13 3.8-15	2.8-11	2.3-9.1	M	249	18%	95%	C	250	00/	010/									(40292-05
110	1.53 1.72	2.00	1.81 2.26	4.5-18 5.3-21	4-16	3-12 3.5-14	2.8-11 3-12	M	234 224	21% 23%	95% 95%	C	359 334	8% 10%	91% 93%	XC	473	4%	74%	XC	522	2%	65%	UC 633
-05	1.88	3.00	2.72	5.8-23	4.5-18	3.8-15	3.3-13	F	215	26%	95%	С	312	12%	94%	VC	447	5%	78%	XC	505	3%	68%	UC 610
Nozzles	2.03	3.50 4.00	3.17	6-24 6.5-26	4.8-19 5.3-21	4-16 4.3-17	3.5-14 3.8-15	F	207 201	27% 29%	95% 95%	C	295 279	13% 14%	95% 96%	VC VC	424 405	5% 6%	81% 83%		490 478	3% 3%	70% 72%	UC 590 UC 574
	2.30	4.50	4.08	7-28	5.5-22	4.5-18	4-16	F	195	30%	95%	M	265	16%	96%	C	388	7%	84%		467	3%	74%	UC 560
	2.43	5.00	4.53	7.3-29	5.8-23	4.8-19	4.3-17	F	190	31%	95%	M	253	17%	97%	C	373	7%	86%		457	4%	75%	UC 547
	2.54 2.66	5.50 6.00	4.98 5.43	7.8-31 8-32	6-24 6.5-26	5-20 5.3-21	4.3-17 4.5-18	F	185 181	32% 33%	95% 95%	M	242 232	17% 18%	97% 97%	C	359 346	7% 8%	87% 88%	VC	448 440	4% 4%	77% 78%	UC 536 UC 527
	Flow	Boom	Tip	Application	Speed (L/H	a on 50cm	spacing) @		10-06	(4028	1-06)	SR1	10-06	(4028	7-06)	MR1	10-06	(4029	91-06)	DR1	10-06	(4028	36-06)	UR110-06
	1.56	1.50	1.30	125L/Ha 3.8-15	150L/Ha 3-12	175L/Ha 2.8-11	200L/Ha 2.4-9.4	Class	285	<141 13%	<600 94%	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class VMD (40292-06
	1.80	2.00	1.74	4.3-17	3.5-14	3-12	2.8-11	M	270	16%	94%	VC	421	6%	83%									10232 00
110 -06	2.02	2.50	2.17	4.8-19 5.3-21	4-16 4.5-18	3.5-14 3.8-15	3-12	M	258 249	18% 20%	94% 94%	C	387	8% 9%	87% 90%	XC	502 481	3% 4%	69%		559 536	2% 2%	58%	UC 622
Nozzles	2.39	3.50	3.04	5.8-23	4.5-18	4-16	3.3-13 3.5-14	M	249	21%	95%	C	358 334	10%	90%	VC	463	4%	73% 76%	XC	517	3%	63% 66%	UC 622
	2.55	4.00	3.48	6-24	5-20	4.3-17	3.8-15	М	234	22%	95%	С	314	12%	93%	VC	447	4%	78%	XC	500	3%	68%	UC 584
	2.71	4.50 5.00	3.91 4.35	6.5-26 6.8-27	5.5-22 5.8-23	4.8-19 5-20	4-16 4.3-17	M	228 223	23% 24%	95% 95%	C C	295 279	13% 14%	94% 95%	VC VC	434 422	5% 5%	80% 82%		485 472	3% 3%	70% 72%	UC 569 UC 556
	2.99	5.50	4.78	7.3-29	6-24	5.3-21	4.5-18	F	218	25%	95%	M	264	14%	95%	VC	411	5%	83%		460	3%	73%	UC 545
	3.12	6.00	5.22	7.5-30	6.3-25	5.3-21	4.8-19	F	213	26%	95%	M	251	15%	96% 37-08)	C	400	5%	84%	VC	449	4%	75%	UC 534 UR110-08
	Flow L/min	Boom BAR	Tip BAR	150L/Ha	Speed (L/H 200L/Ha	250L/Ha		Class	10-08 VMD	(4028 <141	<600	Class	10-08 VMD			Class			91-08) <600		VMD	<141	36-08) <600	
	1.98	1.50	1.18	4-16	3-12	2.4-9.5	2-7.9	C	341	12%	89%	V0	450	00/	000/									(40292-08
110	2.29	2.00	1.58	4.5-18 5.3-21	3.5-14 3.8-15	2.8-11 3-12	2.3-9.2 2.5-10	C	315 295	15% 17%	92% 93%	XC	458 424	6% 7%	66% 72%									
-08	2.81	3.00	2.37	5.5-22	4.3-17	3.3-13	2.8-11	С	278	19%	94%	XC	396	8%	76%	UC	509	5%	57%		593	3%	44%	UC 637
Nozzles	3.03	3.50 4.00	2.76 3.16	6-24 6.5-26	4.5-18 4.8-19	3.8-15 4-16	3-12 3.3-13	M	264 252	20%	95% 95%	VC C	372 351	9% 10%	79% 81%	UC XC	483 461	5% 6%	61% 65%		569 548	4% 4%	47% 50%	UC 612 UC 591
	3.44	4.50	3.55	7-28	5.3-21	4.3-17	3.5-13	M	241	22%	96%	C	333	10%	83%	XC	441	6%	67%		530	4%	52%	UC 573
	3.62	5.00	3.95	7.3-29	5.5-22	4.3-17	3.5-14	M	232	23%	96%	C	317	11%	85%	XC	424	6%	69%	UC	513	4%	54%	UC 557
	3.80	5.50 6.00	4.34	7.5-30 8-32	5.8-23 6-24	4.5-18 4.8-19	3.8-15 4-16	F	223 215	24% 25%	96% 96%	C	302 289	11% 12%	86% 87%	XC	408 394	7% 7%	71% 73%	UC	498 485	4% 5%	56% 57%	UC 543 UC 531
	Flow	Boom	Tip	Application	Speed (L/H	a on 50cm	spacing) @	ER1	10-10	(4028	1-10)		10-10	(4028	7-10)	MR1	10-10	(4029	1-10)	DR1	10-10	(4028	86-10)	UR110-10
	2.71	2.00	1.41	200L/Ha 4-16	250L/Ha 3.3-13	300L/Ha 2.8-11	350L/Ha 2.3-9.3	VC	360	<141 10%	<600 88%	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class VMC (40292-10
	3.03	2.50	1.77	4.5-18	3.8-15	3-12	2.5-10	С	339	12%	90%	XC	440	7%	68%									
110	3.32 3.58	3.00	2.12	5-20 5.5-22	4-16 4.3-17	3.3-13 3.5-14	2.8-11 3-12	C	322 308	14% 16%	91% 91%	XC	410 385	8% 9%	72% 76%	UC	520 495	4% 5%	53% 57%	UC	607 594	5% 5%	58% 56%	UC 617
-10	3.83	4.00	2.82	5.8-23	4.5-18	3.8-15	3.3-13	С	296		92%		363	9%	78%		474	5%	60%		582	5%	54%	
Nozzles	4.06	4.50		6-24	5-20	4-16	3.5-14	С	285	18%	92%	C	344		80%	XC	455	5%	62%	UC	572	5%	52%	UC 577
	4.28 4.49	5.00	3.53	6.5-26 6.8-27	5.3-21 5.5-22	4.3-17 4.5-18	3.8-15 3.8-15	M	275 266	19% 20%	93%	CCC	327 312	10%	82% 83%	XC	438 423	6% 6%	65% 66%	UC	563 555	6% 6%	51% 49%	UC 561 UC 546
	4.69	6.00	4.24	7-28	5.8-23	4.8-19	4-16	M	258	21%	94%		298	11%	84%	XC	409	6%	68%	UC	548	6%	48%	UC 534
	Flow L/min	Boom BAR	Tip BAR	Application 250L/Ha	n Speed (L/H 300L/Ha	a on 50cm 350L/Ha	spacing) @ 400L/Ha	ER11 Class	10-125 VMD	(4028 ⁻ <141	1-125 <u>)</u> <600	SR11	0-125 VMD	(4028) <141	7-125) <600	MR1 Class	10-125 VMD	(4029) <141	1-125) <600	DR11	0-125 VMD	(4028) <141	6-125 <u>)</u> <600	
	3.51	2.50	1.52	4.3-17	3.5-14	3-12	2.8-11	XC	433	8%	67%	Sidoo				Silloo	TIVID	~171	~000	σιασσ	TIVID	~ FT1	2000	
110	3.84	3.00	1.82	4.5-18	3.8-15	3.3-13	3-12	XC	412	9%	71%	XC XC	439	6%	67%	HC	620	/10/	260/	HC	661	20/	220/	
110 -125	4.15 4.44	3.50 4.00	2.12	5-20 5.3-21	4.3-17 4.5-18	3.5-14 3.8-15	3-12 3.3-13	XC	395 381	10% 10%	74% 77%	XC	409 383	6% 7%	75%	UC	638 614	4% 4%	36% 40%	UC	661 645	3% 3%	33% 35%	
Nozzles	4.71	4.50	2.73	5.8-23	4.8-19	4-16	3.5-14	VC	369	11%	79%	VC	361	7%	77%	UC	592	4%	44%	UC	630	4%	37%	
	4.96 5.20	5.00 5.50	3.03	6-24 6.3-25	5-20 5.3-21	4.3-17 4.5-18	3.8-15 4-16	VC C	358 348	11%	80% 81%	C C	341 323	8% 8%	81%	UC	573 556	4% 5%	46% 49%	UC	617 606	4% 4%	39% 40%	
	5.43	6.00	3.64	6.5-26	5.5-22	4.8-19	4-16	С	339		83%		308	8%	71% 75% 77% 79% 81% 82%	ÜC	541	5%	51%	UC	595	4%	41%	
	Flow L/min	Boom BAR	Tip BAR	Application 300L/Ha	n Speed (L/H 400L/Ha	a on 50cm 450L/Ha	spacing) @ 500L/Ha	ER1	10-15 VMD	(4028 <141	(1-15) <600	SR1	10-15 VMD	(4028 <141	(7-15) <600	MR1	10-15 VMD	(4029 <141	91-15) <600	DR1	10-15 VMD	(4028 <141	36-15) <600	
	4.26	3.00	1.55	4.3-17	3.3-13	2.8-11	2.5-10	XC	426	9%	66%	OIdSS				ायठठ	-VIVID	141	-000	Cabio	-VIVID	\1 4 1	_000	
110	4.60	3.50	1.81	4.5-18	3.5-14	3-12	2.8-11	XC	411	10%	69%	XC	460	6%	64% 67%	LIC	600	40/	400/	ЦС	660	20/	400/	
-15 Nozzles	4.91 5.21	4.00 4.50	2.07	5-20 5.3-21	3.8-15 4-16	3.3-13 3.5-14	3-12 3.3-13	XC	386	10% 11%	73%	XC XC	441 423	7% 7%	1 69%	UC	608 594	4% 4%	40% 42%	UC	660 645	3% 4%	40% 42%	
	5.49	5.00	2.58	5.5-22	4-16	3.8-15	3.3-13	XC	376	12%	75%	XC	407	7%	71%	UC	582	4%	44%	UC	632	4%	44%	
	5.76 6.02	5.50 6.00	2.84 3.10	5.8-23 6-24	4.3-17 4.5-18	3.8-15 4-16	3.5-14 3.5-14	VC	367 358	12%	76% 77%	XC	407 393 380 10-20	8% 8%	71% 72% 74%	UC UC UC UC UC	571 560	5% 5%	46% 47%	UC	621 610	4% 4%	46% 48%	
	Flow	Boom	Tip	Application	Speed (L/H	a on 50cm	spacing) @	ER1	<u> 10-20</u>	(4028	1-20) <600	SR1	10-20	(4028	37-20)	INIKI	10-20	(4029	91-20)	-00	010	T /U	1 70 /0	ı
110	L/min	3.50	1.31	400L/Ha	500L/Ha	600L/Ha	700L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600					
110 -20	5.22 5.59	4.00	1.50	4-16 4.3-17	3.3-13 3.3-13	2.5-10 2.8-11	2.3-9 2.4-9.6	UC	502 488	6% 7%	55% 57%					H		E						
Nozzles	5.92	4.50	1.69	4.5-18	3.5-14	3-12	2.5-10	XC	475	7%	60%	XC	412	8%	72%									
	6.24	5.00	1.88 2.06	4.8-19 5-20	3.8-15 4-16	3-12 3.3-13	2.8-11 2.8-11	XC	464 454	8%	64%	XC	385	8% 8%	74% 75%	UC	594	4%	42%					
	0.04				4 40					8%	60% 62% 64% 65%	VC	373	9%	75% 77%	UC	583	5%	4 40/]				
Nozzle	size li	mita	tions	tor PW	M: KM	/i șolen	oids will	ha	ve a	level	ot p	res	sure	loss	thro	ugh	the	sole	noid,	, S0	nozz	le siz	zes la	arger

NOZZIE SIZE IIMITATIONS FOR PAVIVI: PWIVI SOLETIOUS WIII HAVE A TEVEL OF PLEASURE 1038 UTFUSCHIEF TO SELECTION, 30 HOZZIE SIZES TALES TALES THE BOTTOM TO SELECTION OF THE STATE OF THE STA

COMBO-JET® Narrow-Angle Nozzles for Specialty/Spot Spraying

A full selection of narrow angle spray nozzles for use in specialty applications that require a narrow, but thick pattern. These nozzles are fully compatible with PWM spray systems, and other optical spray systems. contact factory for availability.

What is optical spot spraying?

Optical spraying systems, or spot spraying based on optical feedback is used for a variety of purposes and with different mode of actions.

Spray on Green

Optics identify 'green' targets in field, and sprays them. Examples include:

- Spraying herbicides to clear out established weeds before planting.
- Spraying Fungicide in-crop to any plants in field, skipping bare ground.
- Use more expensive modes of actions to manage resistant weeds.
- Foliar fertilizer applications on plant only

Green **on** Green

Optics & computer differentiate plants in field and spray target plants only. Examples include:

- Spraying weeds ONLY with herbicide, avoiding planted crop.
- Spraying crop with fungicide, ignoring weeds or non-target plants.

While the potential benefits of Green on Green provide a great deal of flexibility & means to use cost-prohibitive herbicide regimens, the means to differentiate plants at application time and development of the computing power and learning mechanisms are continually under development

COMBO-JET® ER & DX Series of 20°, 40° & 60° Narrow-Angle Spray Nozzles for Spot Spraying

A new series of **DX** drift reduction, narrow angle nozzles.

	Flow Rate L/	Boom BAR	Application Rate in Litres/Hectare on 25cm Nozzle Spacing				
Angle	min	DAIL	@ Sprayer Speed in km/h	20° N	lozzles	40° Nozzles	60° Nozzles
E	Han alman		and the second s		and the same	and a second second floor	a ta dandara

									systems continu to maximize eff	
	Flow	Boom	Applicat	ion Speed	(L/Ha on	25cm spa	icing) @	20-04	40-04	60-04
	L/min	BAR		200L/Ha				5.10	5.10	5.10
0.4	1.289	2.00	21	15	12	11	10	Drift	Drift	Drift
-04 Nozzles	1.442	2.50	23	17	14	13	12	Reduction DX20-04	Reduction DX40-04	Reduction DX60-04
Nozzies	1.579	3.00	25	19	15	14	13	DX20-04	DX40-04	DX60-04
	1.824	4.00	29	22	18	16	15	Fine Spray	Fine Spray	Fine Spray
	2.039	5.00	33	24	20	18	16	ER20-04	ER40-04	ER60-04
	Flow	Boom		ion Speed				20-05	40-05	60-05
	L/min	BAR		200L/Ha				Drift	Drift	Drift
	1.61	2.00	22	19	15	13	11	Reduction	Reduction	Reduction
-05	1.80	2.50	25	22	17	14	12	DX20-05	DX40-05	DX60-05
Nozzles	1.97	3.00	27	24	19	16	14			
	2.28	4.00	31	27	22	18	16	Fine Spray	Fine Spray	Fine Spray
	2.55	5.00	35	31	24	20	17	ER20-05	ER40-05	ER60-05
	Flow	Boom		ion Speed				20-06	40-06	60-06
	L/min	BAR		250L/Ha				Drift	Drift	Drift
-06	1.93	2.00	23	19	15	13	12	Reduction	Reduction	Reduction
Nozzles	2.16	2.50	26	21	17	15	13	DX20-06	DX40-06	DX60-06
	2.37	3.00	28	23	19	16	14	F' O	F' O	F' O
	2.74	4.00	33	26 29	22 24	19 21	16 18	Fine Spray	Fine Spray	Fine Spray ER60-06
	3.06 Flow	5.00 Boom	37	ion Speed				ER20-06 20-08	ER40-06 40-08	60-08
	L/min	BAR		350L/Ha				20-06	40-06	00-06
	2.58	2.00	21	18	15	14	12	Drift	Drift	Drift
-08	2.88	2.50	23	20	17	15	14	Reduction	Reduction	Reduction
Nozzles	3.16	3.00	25	22	19	17	15	DX20-08	DX40-08	DX60-08
	3.65	4.00	29	25	22	19	18	Fine Spray	Fine Spray	Fine Spray
	4.08	5.00	33	28	24	22	20	ER20-08	ER40-08	ER60-08
	Flow	Boom		ion Speed				20-10	40-10	60-10
	L/min	BAR	400L/Ha	450L/Ha		600L/Ha	650L/Ha			
40	3.22	2.00	19	17	15	13	12	Drift	Drift	Drift
-10 Nozzles	3.60	2.50	22	19	17	14	13	Reduction DX20-10	Reduction DX40-10	Reduction DX60-10
Nozzies	3.95	3.00	24	21	19	16	15	DX20-10	DX40-10	DX00-10
	4.56	4.00	27	24	22	18	17	Fine Spray	Fine Spray	Fine Spray
	5.10	5.00	31	27	24	20	19	ER20-10	ER40-10	ER60-10
	Flow	Boom		ion Speed		25cm spa		20-125	40-125	60-125
	L/min	BAR		600L/Ha			900L/Ha	Drift	Drift	Drift
-125	4.03	2.00	19	16	14	12	11	Reduction	Reduction	Reduction
Nozzles	4.51	2.50	22	18	15	14	12	DX20110	DX40110	DX60110
MUZZICS	4.94	3.00	24	20	17	15	13			
	5.70	4.00	27	23	20	17	15	Fine Spray	Fine Spray	Fine Spray
	6.37	5.00	31	25	22	19	17	ER20110	ER40110	ER60110

For larger sizes of nozzles in narrow-angle varieties, please contact Wilger. As spot-spraying systems continue to develop Wilger expects to have a variety of nozzles developed in turn to support the new improvements to maximize effectiveness.

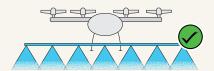
Effectively through development of the narrow angle nozzles, there seems to be a relative sweet spot for consistent coverage and maintaining a reasonable level of driftable fines.

Since optical/spot sprayers are commonly sharing a maximum speed and narrow spacing, it is easier to consolidate what Wilger finds as a good middle ground to offer a single drift reduction nozzle

That being said, if you have a significant need for a coarser option than the DX nozzle, by all means contact Wilger and we would likely have something that might be made available to you

Other uses for narrow-angle nozzles

Narrow angle spray nozzles are also key in improving some non-standard broadcas field spraving.


Narrower angle nozzles can be used in applications that specifically target certain parts of the plant where application to the rest of the plant is waste

There are also cropping applications that might be continually cropping into high stubble, where traditional wide angle nozzles will result in significant spray catch

It is important to recognize narrow angle nozzles are not to be used strictly as replacements for nozzles that are intended for your sprayer (e.g. 80° or 110°). They are only an option to further isolate and target a spray target to achieve better spray efficiency and minimize chemical waste

Are they still PWM-compatible?

The narrow angles use the same drift reduction design that is completely compatible with optical spray systems that are typically driven by PWM solenoids. The consistent thickness of the narrow angles make the key choices for optical spot sprayers for both compatibility and performance

UAV sprayer applicators are able to use DX nozzles for targeted spray applications, but often due to boom constraints or UAV sprayer outfitting, wider angle nozzles like the MR110° nozzles might be used. In specialty circumstances that require a narrow full pattern spray can take advantage of the DX series of narrow-angle nozzles

DX nozzles can be used on UAV sprayers, but they would likely be specialty applications or on sprayers that require very narrow spacing Contact WII GFR offices for smaller sizes of DX nozzles for Drone applications

LERAP Drift Reduction Star Rating for COMBO-JET Spray Nozzles [For UK applicators]

Local Environmental Risk Assessments for Pesticides (LERAP) certification is completed in the UK to provide applications a means to qualify a local drift reduction assessment based on the nozzles used for an application. Stay tuned for further LERAP nozzle testing for more nozzles

,		
LERAP RATING	Nozzle	Pressure Range
	DR110-03	1.0 - 1.5 BAR
****	DR110-05	1.0 - 1.5 BAR
90%	DR110-06	1.0 - 3.0 BAR
Drift Reduction	MR110-05	1.0 - 1.5 BAR
Dint neadotion	MR110-06	1 N - 1 5 RAR

The 4-star LERAP rating is a new rating that illustrates the
highest classification for drift reduction within the standard
certification, (List updated January 2021)

LERAP RATING	Nozzle	Pressure Range
	DR110-025	1.0 - 2.5 BAR
	DR110-03	1.6 - 3.0 BAR
	DR110-04	1.0 - 5.0 BAR
***	DR110-05	1.6 - 5.0 BAR
75%	DR110-06	3.1 - 5.0 BAR
Drift Reduction	MR110-04	1.0 - 2.5 BAR
Diffe ficulation	MR110-05	1.6 - 5.0 BAR
	MR110-06	1.6 - 5.0 BAR
	SR110-05	1.0 - 1.5 BAR

ERAP RATING	Nozzle	Pressure Range		
** 50% Drift Reduction	DR110-025	2.6 - 3.5 BAR		
	DR110-03	3.1 - 5.0 BAR		
	MR110-04	2.6 - 3.5 BAR		
	SR110-05	1.6 - 3.0 BAR		

For the updated list on COMBO-JET nozzles, visit www.wilger.net/LERAP

More information on LERAP certification, process, and the most up to date listing of approved nozzles and their ratings, is available from the Health and Safety Executive (HSE), also available online @ https://secure.pesticides.gov.uk/SprayEquipment

COMBO-JET_® Cap Adapters

Order #####-V0 for viton o-ring assemblies

Wilger manufacturers a variety of adapters to adapt Wilger nozzles to other brands of nozzle bodies (e.g. Teejet, Hypro, Arag, etc) and vice versa. All adapters self-align cap to common nozzle offset.

Square Lug to COMBO-JET

40204-00 Converts Square Lug (e.g. Teejet/Hypro) Outlet to COMBO-JET -TWISTLOCK-

COMBO-JET to Square Luq

40203-00 Converts COMBO-JET Outlet to Square Lug (e.g. Teejet/Hypro) -Quarter Turn-

HARDI to COMBO-JET

40202-00 Converts HARDI Outlet to COMBO-JET -Semi-permanent snap on adapter-

AGRIFAC to COMBO-JET

40205-00 Converts Agrifac Outlet to COMBO-JET Easy nozzle sleevesnaps into any Combo-Jet nozzle

Square Lug to DOUBLE-DOWN

40206-00 Converts Square Lug Outlet (e.g. Teejet/Hypro) to COMBO-JET Double-Down Outlets -TWISTLOCK-

JACTO to COMBO-JET

40207-00 Converts Jacto Outlet to COMBO-JET -Quarter Turn-

Radialock Slotted Caps (Compatible with COMBO-JET outlets)

Wilger manufacturers a variety of caps for accepting flanged spray tips onto any Combo-Jet or Combo-Rate nozzle outlets. These caps require a spray tip gasket to seal, which is sold separately.

1/2" round

spray tips

Gasket for Slotted Caps

3/8" Slot 3/8" For 3/8" Teejet/Hypro 40269-05 spray tips

Available in colors: Grey (-09), Orange (-08), Brown (-07), Blue (-06), Black (-05), Yellow (-04), Green (-03), Will (-02), Red (-01)

7/16" Wide Slot

Available in colors*: Black (-05), Yellow (-04), Green (-03), Willia (£02), Red (-01) *Check factory availability of non-black colors.

Conventional Flat Fan Flanged Spray Tips (3/8" slot)

1/2" Round Slot

Wilger manufacturers a variety of sizes of flanged stainless steel spray tips inserted permanently into a flanged spray tip assembly. These would correspond to Combo-Jet ER series of spray nozzle, as they are a conventional flat fan tip.

Optimal

Height

20°

ER 80° Flanged Tips 40170-04

Optimal Height

110

Stainless Steel Insert Color-coded to flow rate & stamped for easy identification

Tip Size	-005	-0067	-01	-015	-02	-025	-03	-04	-05	-06	-08
80° ER Tip	ER80-005	ER80-007	ER80-01	ER80-015	ER80-02	ER80-025	ER80-03	ER80-04	ER80-05	ER80-06	ER80-08
Part #	40170-005	40170-007	40170-01	40170-015	40170-02	40170-025	40170-03	40170-04	40170-05	40170-06	40170-08
110° ER Tip		-	ER110-01	ER110-015	ER110-02	ER110-025	ER110-03	ER110-04	ER110-05	ER110-06	ER110-08
Part #	-	-	40169-01	40169-015	40169-02	40169-025	40169-03	40169-04	40169-05	40169-06	40169-08

For flow rate charts, spray quality, and more information on flanged spray tips, reference the 80° and 110° spray nozzle charts.

COMBO-JET_® Caps, Adapters & Strainers

Wilger manufacturers a variety of caps that are used for metering flow rates (through hose barb, push-in tube, or streamer caps) or used as accessories for other spraying or plumbing functions.

Plug Caps

Caps unused Combo-Jet nozzle body outlets

Cap Only
40272-05
-

Double Nozzle Spraying Adapters

Be sure to read the 'Tip Selection Guide for Double Nozzle Spraying

Y-Adapter or 'Double-Down' mode?

To split up a high volume, coarse spray nozzle into two more meaningful spray qualities Y-adapter is excellent for vertical growing targets, double-down is better into thick canopies

PWM-Ready Double Nozzle Spraying

Just add the two nozzle sizes together for your PWM nozzle flow?

For example: MR110-04 + \$33110-06 = 110-10 *PWM solenoid pressure drop would be based on -10 size

Threaded Outlet Adapters

Threaded adapter caps can be used for any application that would require a threaded fitting.

Threaded Outlet Caps					
Thread Size FKM O-ring Assy Cap Only					
1/8" NPT-F	40277-B5	40277-05			
1/4" NPT-F	40273-B5	40273-05			
45° 1/4" NPT-F	40274-B5	40274-05			

Y Splitter [60° Forward/Back]

Spray forward and backward for high volume and fungicide spray applications.

40440-00						
Y Splitter Cap (60° forward, 60° backward)						
Cap ONLY	w/ FKM O-ring	w/ viton O-ring				
40440-01	40440-00	40440-V0				

Double-Down Adapter

Splitter used to spray with two nozzles to make more effective spray quality

70	111 00	
Doub	ole-Down Adapter	Сар
ONLY	w/ FKM O-ring	w/ viton O-ring
41-01	40441-00	40441-V0

Hose Barb Caps

Hose barb caps can be used as manifold plumbing parts or for metering flow.

Hose Barb Caps					
Barb Size FKM O-ring Assy Cap Only					
1/8"	40420-B5	40420-05			
1/4"	40422-B5	40422-05			
3/8"	40424-B5	40424-05			
1/2"	40426-B5	40426-05			

To use cap for metering, order CAP ONLY, with o-ring and 40285-## metering orifice.

Push-in-Tube Caps

Quick connect tube caps seal on the outside diameter of a tube, and used as manifold plumbing parts or for metering flow.

Quick Connect/Push-in-tube Caps					
Tube Size (O.D.) FKM O-ring Assy Cap Only					
1/4"	40435-B5	40435-05			
5/16"	40437-B5	40437-05			
3/8"	40436-B5	40436-05			

To use cap for metering, order CAP ONLY, with o-ring and 40285-## metering orifice.

2-Hole & 3-Hole Streamer Caps

2-hole streamer caps are used to stream liquid fertilizer for 10" coverage

3-hole streamer caps are ised to stream liquid fertilizer for ~6.67" coverage

Drilled Fertilizer Streamer Caps [CAP ONLY]						
Cap Size Flow Range 2-Hole Cap 3-Hole Cap						
Small	0.05 - 0.4 us gpm	40432-047	40433-047			
Medium	0.2 - 1.0 us gpm	40432-086	40433-067			
Large	0.5 - 3.0 us gpm	40432-104	40433-104			

COMBO-JET Cap O-rings

40261-00

13mm x 3mm o-ring for COMBO-JET® Caps & Spray Tips

COMBO-JET Snap-in Strainers

Combo-jet strainers snap into the metering orifice

or seal adapter for a 'one-piece'-handling cap

40251-00 40249-00

Strainers

Stainless

Steel for

Chemical

Spraying

40250-00

100 mesh

50 mesh

25 mesh

16 mesh

Adapter for non-metering caps Seal adapter is used to keep o-ring in place if metering orifice is NOT used

Slotted

Plastic

Strainer

Fertilizer

Stainless Mesh

#40251-00

#40250-00

40248-00

Color

Blue

'-B5' Assembly Breakdown - For non-metering apps For applications that do not required liquid metering orifices (e.g. plumbing manifolds), the -B5 is an assembly that includes an o-ring (#40260-00), seal adapter (#40261-00 in lieu of orifice), and cap.

Hose Drop & Extension Caps

Hose Drop Caps are used to feed or spray down below a canopy to minimize crop contact.

Combo-Jet	2"	40210-00		
to Combo-Jet	5"	40211-00	٦ ا	
Combo-Jet	16"	22026-00	٦ ا	
Cap to	24"	22036-00	٦ ا	
1/4" NPT-M	36"	22038-00] [100
1/4 INF 1-101	48"	22048-00	╛╽	
22026-00	2" Cc	5.2 2210-00 mbo-Jet Cap ixtension		40211-00 Combo-Jet Cap Extension
T		22021-00		

Other styles of Hose Drop Assemblies using threaded inlets are also available. Find them in the DRY BOOMS section of the catalog.

Ordering [Drilled] Streamer Caps

For drilled streamer cap assembly, order:

- 1. Metering Orifice (40285-## series)*
- 2. Streamer cap (2 or 3 hole, sized to flow range)
- 3. 0-ring seal (40260-00 or 40260-V0)
- 4. [Optional] Slotted Strainer

*For selecting metering orifices to fit your application, use Tip Wizard, consult flow charts, or use other tools available at www.wilger.net.

Deflector Plate 3-hole fertilizer streamer nozzle improves stream consistency at higher pressures for improved application.

Next page for info.

Mesh Size Slotted Strainer

40249-00

40248-00

40247-00

Wilger makes spray tips for applicators who care about how they spray.

Wilger makes nozzle bodies & components that address and support best practices being developed in the crop protection industry.

Wilger makes flow monitoring & metering components that are critical to maintaining effective and consistent application.

CANADA
Wilger Industries Ltd.
Site 412, Box 280, RR#4
Capital Circle W & Auction Mart Rd.
Saskatoon, SK, Canada S7K 3J7
Phone: 1 (833) 242-4121
Fax: (306) 242-4122
Email: info@wilger.net

UNITED STATES
Wilger Inc.
255 Seahorse Drive
Lexington, TN, USA
38351-6538
Phone: (877) 968-7695
Fax: (877) 968-7613
Email: WilgerEsc@WilgerEsc.com

ARGENTINA
Wilger Argentina
Mitre 699
San Nicolas (2900)
Buenos Aires, Argentina
Phone: +54 9 336 4596710
Email: cjporras@gmail.com

Focused on Application
Performance for
Over 45 Years

www.wflger.net

All Wilger trademarks and logos are owned by Wilger Industries Ltd. All other brand or product names are

Printed in Canada